See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266274035

## On polynomial orthogonality on Banach spaces

Article • January 2000

| CITATIONS |  |
| :--- | :--- |
| 0 |  |
| 1 READS |  |
| 26 |  |

Some of the authors of this publication are also working on these related projects:Thermoelectric Materials and Devices for Energy Saving and Security Increase View projectA weakly hypercyclic composition operator on space $\mathrm{H}_{\mathrm{B}} \mathrm{b}(\mathrm{C})$ of analytic functions. View project

## A. V. Zagorodnyuk*

# ON POLYNOMIAL ORTHOGONALITY ON BANACH SPACES 

A. V. Zagorodnyuk. On polynomial orthogonality on Banach spaces, Matematychni Studii, 14 (2000) 189-192.

In the paper the notion of orthogonality with respect to a homogeneous polynomial $p$ of arbitrary degree on a Banach space is defined and some properties of $p$-orthogonal sequences are studied. Some application for divisibility of polynomials on Banach spaces are given.
А. В. Загороднюк. О полиномиальной ортогональности в банаховъх пространствах // Математичні Студії. - 2000. - Т.14, №2. - С.189-192.

В статье определено понятие ортогональности в банаховом пространстве относительно однородного полинома $p$ произвольной степени. Изучены некоторые свойства $p$-ортогональных последовательностей.

Let $X$ be a Banach space over a field $\mathbb{K}$ of real or complex numbers. A function $p: X \rightarrow \mathbb{K}$ is an $n$-homogeneous polynomial if there is a symmetric $n$-linear mapping $\bar{p}: X \times \cdots \times X=$ $X^{n} \rightarrow \mathbb{K}$ such that $p(x)=\bar{p}(x, \ldots, x)$ for all $x \in X$. A polynomial $p: X \rightarrow \mathbb{K}$ is just a finite sum of homogeneous polynomials.

It is well known that a function $p: X \rightarrow \mathbb{K}$ is a polynomial of degree $n$ if and only if $p$ is a polynomial of degree not greater than $n$ on each affine line in $X$ and on some affine line $p$ is an $n$-degree polynomial ([2], p. 57).

Let $p$ be an $n$-homogeneous polynomial on $X, n>1$. We say that linearly independent vectors $x, y \in X$ are $p$-orthogonal $\left(x \perp_{p} y\right)$ if $p\left(t_{1} x+t_{2} y\right)=t_{1}^{n} p(x)+t_{2}^{n} p(y)$ for all numbers $t_{1}, t_{2}$. It means that for every $k, 1<k<n, \bar{p}(\overbrace{x, \ldots, x}^{k}, y, \ldots, y)=0$. A subspace $X_{1}$ is $p$-orthogonal to $X_{2}$ if each vector from $X_{1}$ is $p$-orthogonal to each vector of $X_{2}$. In [4] it is proved that if $X$ is complex infinite-dimensional space, then there is an infinite-dimensional subspace in $p^{-1}(0)$. Moreover, from Lemma 4 of [4] (see also [7]) it follows
Theorem A. For any finite numbers of homogeneous polynomials $p_{1}, \ldots, p_{n}$ on an infinitedimensional complex Banach space $X$ and any vector $z$ from the common set of zeros of $p_{1}, \ldots, p_{n}$ there is an infinite-dimensional linear subspace $Z$ in $\bigcap_{i=1}^{k} p_{i}^{-1}(0)$ such that $z \in Z$.

The proof of Theorem A is based on a claim proved in [4] (see also [1]) that for any infinite-dimensional complex space $X$ and homogeneous polynomial $p$ there is an infinite sequence $\left(x_{i}\right)_{i=1}^{\infty}$ such that $p\left(t_{1} x_{1}+\cdots+t_{m} x_{m}\right)=t_{1}^{n} p\left(x_{1}\right)+\cdots+t_{m}^{n} p\left(x_{m}\right)$ for every $m$. So, according to our definition of $p$-orthogonality we can write

[^0]Theorem B. For every homogeneous polynomial $p$ on an infinite-dimensional complex Banach space $X$ there is an infinite linearly independent sequence $\left(x_{i}\right)_{i=1}^{\infty} \subset X$ of $p$-orthogonal vectors.

The purpose of this paper is to discuss the notion of $p$-orthogonality on Banach spaces and related questions.

Throughout this paper $X$ is an infinite-dimensional Banach space and $p$ is a homogeneous polynomial of degree $n>1$ on $X$.

Proposition 1. For every finite-dimensional subspace $V$ of a complex Banach space $X$ there is an infinite-dimensional subspace $Z_{0}$ such that $V \perp_{p} Z_{0}$.
Proof. Let $\operatorname{dim} V=m$ and $e_{1}, \ldots, e_{m}$ be a basis in $V$. Put

$$
p_{i_{1}, \ldots, i_{m}}(x):=\bar{p}(\overbrace{e_{1}, \ldots, e_{1}}^{i_{1}}, \overbrace{e_{2}, \ldots, e_{2}}^{i_{2}}, \ldots, \overbrace{e_{m}, \ldots, e_{m}}^{i_{m}}, x, \ldots, x),
$$

where $0<i_{1}+\cdots+i_{m}<n$. Evidently,

$$
\bigcap_{0<i_{1}+\cdots+i_{m}<n} p_{i_{1}, \ldots, i_{m}}^{-1}(0) \perp_{p} V .
$$

From Theorem A it follows that

$$
\bigcap_{0<i_{1}+\cdots+i_{m}<n} p_{i_{1}, \ldots, i_{m}}^{-1}(0)
$$

contains an infinite-dimensional subspace $Z_{0}$.
From Proposition 1 it follows that every finite sequence of $p$-orthogonal linearly independent vectors can be extended to some infinite sequence of $p$-orthogonal linearly independent vectors.

Recall that the set ess ker $p:=\left\{x_{0} \in X: p\left(x+x_{0}\right)=p(x) \forall x \in X\right\}$ is said to be the essential kernel of a homogeneous polynomial $p$. In [4] it is shown that the essential kernel is always a closed linear subspace of $X$.

We say that a sequence $\left(x_{i}\right)_{i} \subset X$ is $p$-orthonormal if it is $p$-orthogonal and $p\left(x_{i}\right)=1$. If $p\left(x_{i}\right) \neq 0$ for each $i$ we will say that $\left(x_{i}\right)_{i}$ is semi-p-orthonormal sequence.
Proposition 2. Let $X$ be a separable Banach space and $p$ be a continuous n-homogeneous polynomial and ess ker $p=0$. Let us suppose that there is a $p$-orthonormal sequence $\left(x_{i}\right)_{i=1}^{\infty}$ such that its linear span is dense in $X$. Then there is a norm $\|\cdot\|_{n}$ in $X$ such that the completion ( $X,\|\cdot\|_{n}$ ) of $X$ in the norm $\|\cdot\|_{n}$ is isomorphic to $\ell_{n}$ and for any finite sum $\sum a_{i} x_{i}$ we have $\left\|\sum a_{i} x_{i}\right\|_{n}=\left[p\left(\sum\left|a_{i}\right| x_{i}\right)\right]^{1 / n}$.
Proof. Let us consider the subspace $X_{f} \subset X$ of finite sums $\sum a_{i} x_{i} \subset X$. Evidently, $\left\|\left\|a_{i} x_{i}\right\|_{n}:=\left[p\left(\sum\left|a_{i}\right| x_{i}\right)\right]^{1 / n}=\left(\sum\left|a_{i}\right|^{n}\right)^{1 / n}\right.$ is a norm on $X_{f}$ and the completion $\left(X_{f},\||\cdot|\|_{n}\right)$ of $X_{f}$ in the norm $\|\mid \cdot\|_{n}$ is isomorphic to $\ell_{n}$. On the other hand, since $X_{f}$ is a dense subspace in $X$ and the norm $\|\|\cdot\|\|_{n}$ is continuous in $X$ we can extend it to a seminorm $\|\cdot\|_{n}$ on the whole space $X$ by continuity. Let us show that $\|\cdot\|_{n}$ is a norm. Note first that $|p(x)| \leq\|x\|_{n}^{n}$. This inequality is obvious for $x \in X_{f}$ and is true for every $x \in X$ by density of $X_{f}$. Let us suppose that $\left\|x_{0}\right\|_{n}=0$ for some $x_{0} \in X$. Then for every $x \in X$ and a number $t$

$$
\left|p\left(x+t x_{0}\right)\right| \leq\left\|x+t x_{0}\right\|_{n}^{n} \leq\left(\|x\|_{n}+|t|\left\|x_{0}\right\|_{n}\right)^{n}=\|x\|_{n}^{n} .
$$

Thus $p\left(x+t x_{0}\right)=p(x)$ (see [4] Corollary 10) and $x_{0} \in$ ess ker $p$, hence $x_{0}=0$.
Thus $X \subset\left(X_{f},\|\cdot\|_{n}\right)$ and therefore $\left(X,\|\cdot\|_{n}\right)$ is isomorphic to $\ell_{n}$.

Let us recall that a polynomial $p$ is reducible if there are nonconstant polynomials $p_{1}$ and $p_{2}$ such that $p=p_{1} p_{2}$. It is clear that if $p$ is irreducible on some subspace then $p$ is irreducible. In [3] it was announced that any irreducible polynomial on an infinite-dimensional space is irreducible on some finite-dimensional subspace. As far as we know [5], a proof of this result has not been published.

Theorem 3. (Mazur and Orlicz) Let $p$ be an irreducible polynomial on an infinite-dimensional space $X$ over the field $\mathbb{K}$. Then there exists a finite-dimensional subspace $W \subset X$ such that the restriction $\left.p\right|_{W}$ of $p$ on $W$ is an irreducible polynomial.

Proof. Let $V$ be a finite-dimensional subspace. Let us denote by $l(V)$ the number of irreducible factors of $\left.p\right|_{V}$. It is clear that if $V_{2} \supset V_{1}$ then $l\left(V_{2}\right) \leq l\left(V_{1}\right)$. Let us denote by $l$ the minimum of $l(V)$ over all finite-dimensional subspaces $V \subset X$. This number is well defined because there exists a minimal element in each subset of $\mathbb{N}$.

Let $W$ be a finite-dimensional subspace such that $l(W)=l$. If $l=1$ then $W$ is the required subspace. Let us suppose that $l>1$. Let $x_{0}$ be an arbitrary element of $X$. We denote by $Z_{x_{0}}$ a subspace of $X$ such that $Z_{x_{0}}=W+R_{x_{0}}$, where $R_{x_{0}}$ is any finite-dimensional subspace, $x_{0} \in$ $R_{x_{0}} . Z_{x_{0}}$ is a finite-dimensional subspace, so the polynomial $\left.p\right|_{Z_{x_{0}}}$ can be decomposed into $l$ nonconstant polynomials $r_{1}\left[Z_{x_{0}}\right](x), r_{2}\left[Z_{x_{0}}\right](x), \ldots, r_{l}\left[Z_{x_{0}}\right](x)$, where the notation $r_{k}\left[Z_{x_{0}}\right](x)$ means that the polynomial $r_{k}\left[Z_{x_{0}}\right]$ is defined on $Z_{x_{0}}$. Let us write $r_{k}^{0}=r_{k}[W]=\left.r_{k}\left[Z_{x_{0}}\right]\right|_{W}$ for any $x_{0}$. So for every $x \in X$ the polynomial $p$ can be decomposed into $l$ nonconstant polynomials $r_{1}\left[Z_{x}\right], \ldots, r_{l}\left[Z_{x}\right]$ on finite-dimensional subspace $Z_{x}=W+R_{x}$. Without loss of generality, we can assume that $r_{k}\left[Z_{x}\right]=r_{k}^{0}$ on $W$. So for every $x \in X$ there are defined functions

$$
r_{k}(x):=r_{k}\left[Z_{x}\right](x), k=1, \ldots, l .
$$

It is clear that the value of $r_{k}$ at the point $x$ is independent of the choice of $R_{x}$. Let us show that $r_{k}(x), k=1, \ldots, l$ are polynomials on $X$. Indeed, let $R_{x+t h}$ be a finite-dimensional subspace which contains $x+t h$ for some $x, h \in X$ and all $t \in \mathbb{K}$. Then $Z_{x+t h}=W+R_{x+t h}$ is a finite-dimensional subspace which contains the linear span of $x$ and $h$. Since $r_{k}\left[Z_{x+t h}\right]$ is a divisor of $\left.p\right|_{Z_{x+t h}}$ and $x, h \in Z_{x+t h}$, we see that $r_{k}\left[Z_{x+t h}\right](x+t h)$ is a polynomial of variable $t$ (for fixed $x, h)$. Also, if $x_{1}+t_{1} h_{1}=x_{2}+t_{2} h_{2}$ then $r_{k}\left(x_{1}+t_{1} h_{1}\right)=r_{k}\left(x_{2}+t_{2} h_{2}\right)$ because $r_{k}\left[Z_{x_{1}+t_{1} h_{1}}\right]$ and $r_{k}\left[Z_{x_{2}+t_{2} h_{2}}\right]$ coincide on the common domain. Thus, all $r_{k}(x) k=1, \ldots, l$ are polynomials and $p(x)=r_{1}(x) \ldots r_{l}(x)$. But this contradicts to the irreducibility of $p$.

Proposition 4. Let $p$ be an $n$-homogeneous polynomial on a complex $m$-dimensional Banach space $X$ and $n<m \leq \infty$. If there is a sequence $x_{1}, \ldots, x_{k}$ of semi- $p$-orthonormal linear independent vectors in $X$, where $n<k \leq m$ then $p$ is irreducible.

Proof. Without loss of generality, we can assume that $p\left(x_{i}\right)=1$. Then the restriction of $p$ on a subspace $V$, that is on the linear span of $x_{1}, \ldots, x_{k}$, is a symmetric polynomial with respect to permutations of $x_{1}, \ldots, x_{k}$. Moreover, $p\left(\sum_{i=1}^{k} a_{i} x_{i}\right)=\sum_{i=1}^{k} a_{i}^{n}$. Let us suppose that $p$ is reducible. Since $k>n$, each divisor of $p$ is a symmetric polynomial [8]. On the other hand, every symmetric polynomial can be represented by an algebraic combination of polynomials $q_{r}$, where $q_{r}\left(\sum_{i=1}^{k} a_{i} x_{i}\right)=\sum_{i=1}^{k} a_{i}^{r}, r=1, \ldots, n-1$ ([6], p. 79). Since $p=q_{n}$, this contradicts to the algebraic independence of $q_{1}, \ldots, q_{n}$.

Thus from Proposition 4 it follows that if $p$ is a reducible $n$-homogeneous polynomial then there are at most $n$ linearly independent $p$-orthonormal vectors.

Theorem 5. Let $X$ be a complex infinite-dimensional linear space. Then for each polynomial $p: X \rightarrow \mathbb{C}$ there is an infinite-dimensional subspace $Z \subset X$ such that the restriction of $p$ on $Z$ is a product of one-degree polynomials.

Proof. From Theorem A it follows that there exists an affine subspace $Z_{1}$ of infinite dimension such that $\operatorname{ker} p \supset Z_{1}$. We can suppose that $Z_{1}$ is not a proper subspace of any affine subspace in zero set of $p$. Let $Z$ be some linear subspace of $X, Z \supset Z_{1}$ and $Z_{1}$ be a hyperplane in $Z$ (i.e. $Z$ has the codimension equal to 1 in $Z$ ). Then there is a polynomial $q: Z \rightarrow \mathbb{C}$, $\operatorname{deg} q=1$, such that $\operatorname{ker} q=Z_{1}$. It is clear that $q$ is a divisor of $p$ in $Z$ (see e.g. [3], [9]). A simple induction shows that we can choose an infinite-dimensional subspace $Z$ such that there exist polynomials $q_{1}, \ldots, q_{n}, \operatorname{deg} q_{i}=1, n:=\operatorname{deg} p$ and $p=q_{1} \ldots q_{n}$ on $Z$.

Corollary 6. Every continuous polynomial on a complex Banach space is weakly continuous polynomial of the same degree on some infinite-dimensional subspace.

Proof. It is evident that every product of one-degree polynomials is weakly continuous. Thus, we can use Theorem 5.

## REFERENCES

1. Aron R. M., Rueda M. P., A problem concerning zero-subspaces of homogeneous polynomials, Linear Topological Spaces and Complex Analysis, 3 (1997), 20-23.
2. Dineen S., Complex analysis in locally convex spaces, North-Holland Mathematics Studies, 57 (1981).
3. Mazur S., Orlicz W., Sur la divisibilité des polynômes abstraits, C.R. Acad. Sci., Paris, 202 (1936), 621-623.
4. Plichko A., Zagorodnyuk A., On automatic continuity and three problems of "The Scottish Book" concerning the boundedness of polynomial functions, J. Math. Anal. Appl., 220 (1998), 477-494.
5. G. Köthe, Stanislaw Mazur's contributions to functional analysis, Math. Ann. 277 (1987), 489-452.
6. van der Waerden, B. L., Modern Algebra, Ungar (1964).
7. Zagorognyuk A. V., The existence of a linear manifold in a kernel of a complex polynomial functional on a finite dimensional linear space, Matematychni Studii, 8 (1997), no. 1, 115-118. (in Ukrainian)
8. Zagorognyuk A., Groups of symmetry of zero-set of polynomial functionals on complex Banach spaces, Mathematical Methods and Physicomechanical Fields, 41 (1998), no. 3, 20-23. (in Ukrainian)
9. Zagorodnyuk A., On two statements of "The Scottish Book" concerning the ring of bounded polynomial functionals on Banach spaces, Ukrain. Mat. J. 48 (1996), no. 10, 1507-1516.

Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., L'viv, 290601 Ukraine
sirand@mebm.lviv.ua


[^0]:    2000 Mathematics Subject Classification: 46G20.

    * The author was supported in part by NSF Grant P-1-2089

