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A. V. Zagorodnyuk∗

ON POLYNOMIAL ORTHOGONALITY ON BANACH SPACES

A. V. Zagorodnyuk. On polynomial orthogonality on Banach spaces, Matematychni Studii, 14
(2000) 189–192.

In the paper the notion of orthogonality with respect to a homogeneous polynomial p of
arbitrary degree on a Banach space is defined and some properties of p-orthogonal sequences
are studied. Some application for divisibility of polynomials on Banach spaces are given.

А. В. Загороднюк. О полиномиальной ортогональности в банаховых пространствах //
Математичнi Студiї. – 2000. – Т.14, №2. – C.189–192.

В статье определено понятие ортогональности в банаховом пространстве относительно
однородного полинома p произвольной степени. Изучены некоторые свойства p-ортого-
нальных последовательностей.

Let X be a Banach space over a field K of real or complex numbers. A function p : X → K
is an n-homogeneous polynomial if there is a symmetric n-linear mapping p̄ : X × · · · ×X =
Xn → K such that p(x) = p̄(x, . . . , x) for all x ∈ X. A polynomial p : X → K is just a finite
sum of homogeneous polynomials.

It is well known that a function p : X → K is a polynomial of degree n if and only if p is
a polynomial of degree not greater than n on each affine line in X and on some affine line p
is an n-degree polynomial ([2], p. 57).

Let p be an n-homogeneous polynomial on X, n > 1. We say that linearly independent
vectors x, y ∈ X are p-orthogonal (x ⊥p y) if p(t1x + t2y) = tn1p(x) + tn2p(y) for all numbers

t1, t2. It means that for every k, 1 < k < n, p̄(
k︷ ︸︸ ︷

x, . . . , x, y, . . . , y) = 0. A subspace X1 is
p-orthogonal to X2 if each vector from X1 is p-orthogonal to each vector of X2. In [4] it is
proved that if X is complex infinite-dimensional space, then there is an infinite-dimensional
subspace in p−1(0). Moreover, from Lemma 4 of [4] (see also [7]) it follows

Theorem A. For any finite numbers of homogeneous polynomials p1, . . . , pn on an infinite-
dimensional complex Banach space X and any vector z from the common set of zeros of
p1, . . . , pn there is an infinite-dimensional linear subspace Z in

⋂k
i=1 p

−1
i (0) such that z ∈ Z.

The proof of Theorem A is based on a claim proved in [4] (see also [1]) that for any
infinite-dimensional complex space X and homogeneous polynomial p there is an infinite
sequence (xi)

∞
i=1 such that p(t1x1 + · · · + tmxm) = tn1p(x1) + · · · + tnmp(xm) for every m. So,

according to our definition of p-orthogonality we can write
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Theorem B. For every homogeneous polynomial p on an infinite-dimensional complex Ba-
nach space X there is an infinite linearly independent sequence (xi)

∞
i=1 ⊂ X of p-orthogonal

vectors.

The purpose of this paper is to discuss the notion of p-orthogonality on Banach spaces
and related questions.

Throughout this paper X is an infinite-dimensional Banach space and p is a homogeneous
polynomial of degree n > 1 on X.

Proposition 1. For every finite-dimensional subspace V of a complex Banach space X there
is an infinite-dimensional subspace Z0 such that V ⊥p Z0.

Proof. Let dimV = m and e1, . . . , em be a basis in V. Put

pi1,...,im(x) := p̄(

i1︷ ︸︸ ︷
e1, . . . , e1,

i2︷ ︸︸ ︷
e2, . . . , e2, . . . ,

im︷ ︸︸ ︷
em, . . . , em, x, . . . , x),

where 0 < i1 + · · ·+ im < n. Evidently,⋂
0<i1+···+im<n

p−1i1,...,im
(0) ⊥p V.

From Theorem A it follows that ⋂
0<i1+···+im<n

p−1i1,...,im
(0)

contains an infinite-dimensional subspace Z0.

From Proposition 1 it follows that every finite sequence of p-orthogonal linearly indepen-
dent vectors can be extended to some infinite sequence of p-orthogonal linearly independent
vectors.

Recall that the set ess ker p := {x0 ∈ X : p(x + x0) = p(x) ∀x ∈ X} is said to be the
essential kernel of a homogeneous polynomial p. In [4] it is shown that the essential kernel
is always a closed linear subspace of X.

We say that a sequence (xi)i ⊂ X is p-orthonormal if it is p-orthogonal and p(xi) = 1. If
p(xi) 6= 0 for each i we will say that (xi)i is semi-p-orthonormal sequence.

Proposition 2. Let X be a separable Banach space and p be a continuous n-homogeneous
polynomial and ess ker p = 0. Let us suppose that there is a p-orthonormal sequence (xi)

∞
i=1

such that its linear span is dense in X. Then there is a norm ‖ · ‖n in X such that the
completion (X, ‖ · ‖n) of X in the norm ‖ · ‖n is isomorphic to `n and for any finite sum∑

aixi we have ‖
∑

aixi‖n = [p(
∑
|ai|xi)]

1/n.

Proof. Let us consider the subspace Xf ⊂ X of finite sums
∑

aixi ⊂ X. Evidently,
|||
∑

aixi|||n := [p(
∑
|ai|xi)]

1/n = (
∑
|ai|n)1/n is a norm on Xf and the completion (Xf , |||·|||n)

of Xf in the norm ||| · |||n is isomorphic to `n. On the other hand, since Xf is a dense subspace
in X and the norm ||| · |||n is continuous in X we can extend it to a seminorm ‖ · ‖n on the
whole space X by continuity. Let us show that ‖·‖n is a norm. Note first that |p(x)| ≤ ‖x‖nn.
This inequality is obvious for x ∈ Xf and is true for every x ∈ X by density of Xf . Let us
suppose that ‖x0‖n = 0 for some x0 ∈ X. Then for every x ∈ X and a number t

|p(x + tx0)| ≤ ‖x + tx0‖nn ≤ (‖x‖n + |t|‖x0‖n)n = ‖x‖nn.

Thus p(x + tx0) = p(x) (see [4] Corollary 10) and x0 ∈ ess ker p, hence x0 = 0.
Thus X ⊂ (Xf , ‖ · ‖n) and therefore (X, ‖ · ‖n) is isomorphic to `n.
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Let us recall that a polynomial p is reducible if there are nonconstant polynomials p1 and
p2 such that p = p1p2. It is clear that if p is irreducible on some subspace then p is irreducible.
In [3] it was announced that any irreducible polynomial on an infinite-dimensional space is
irreducible on some finite-dimensional subspace. As far as we know [5], a proof of this result
has not been published.

Theorem 3. (Mazur and Orlicz) Let p be an irreducible polynomial on an infinite-dimensi-
onal space X over the field K. Then there exists a finite-dimensional subspace W ⊂ X such
that the restriction p|W of p on W is an irreducible polynomial.

Proof. Let V be a finite-dimensional subspace. Let us denote by l(V ) the number of irre-
ducible factors of p|V . It is clear that if V2 ⊃ V1 then l(V2) ≤ l(V1). Let us denote by l the
minimum of l(V ) over all finite-dimensional subspaces V ⊂ X. This number is well defined
because there exists a minimal element in each subset of N.

Let W be a finite-dimensional subspace such that l(W ) = l. If l = 1 then W is the required
subspace. Let us suppose that l > 1. Let x0 be an arbitrary element of X. We denote by Zx0

a subspace of X such that Zx0 = W +Rx0 , where Rx0 is any finite-dimensional subspace, x0 ∈
Rx0 . Zx0 is a finite-dimensional subspace, so the polynomial p|Zx0

can be decomposed into l
nonconstant polynomials r1[Zx0 ](x), r2[Zx0 ](x),. . . , rl[Zx0 ](x), where the notation rk[Zx0 ](x)
means that the polynomial rk[Zx0 ] is defined on Zx0 . Let us write r0k = rk[W ] = rk[Zx0 ]|W
for any x0. So for every x ∈ X the polynomial p can be decomposed into l nonconstant
polynomials r1[Zx], . . . , rl[Zx] on finite-dimensional subspace Zx = W + Rx. Without loss
of generality, we can assume that rk[Zx] = r0k on W. So for every x ∈ X there are defined
functions

rk(x) := rk[Zx](x), k = 1, . . . , l.

It is clear that the value of rk at the point x is independent of the choice of Rx. Let us
show that rk(x), k = 1, . . . , l are polynomials on X. Indeed, let Rx+th be a finite-dimensional
subspace which contains x + th for some x, h ∈ X and all t ∈ K. Then Zx+th = W + Rx+th

is a finite-dimensional subspace which contains the linear span of x and h. Since rk[Zx+th] is
a divisor of p|Zx+th

and x, h ∈ Zx+th, we see that rk[Zx+th](x+ th) is a polynomial of variable
t (for fixed x, h). Also, if x1 + t1h1 = x2 + t2h2 then rk(x1 + t1h1) = rk(x2 + t2h2) because
rk[Zx1+t1h1 ] and rk[Zx2+t2h2 ] coincide on the common domain. Thus, all rk(x) k = 1, . . . , l
are polynomials and p(x) = r1(x) . . . rl(x). But this contradicts to the irreducibility of p.

Proposition 4. Let p be an n-homogeneous polynomial on a complex m-dimensional Banach
space X and n < m ≤ ∞. If there is a sequence x1, . . . , xk of semi-p-orthonormal linear
independent vectors in X, where n < k ≤ m then p is irreducible.

Proof. Without loss of generality, we can assume that p(xi) = 1. Then the restriction of p
on a subspace V, that is on the linear span of x1, . . . , xk, is a symmetric polynomial with
respect to permutations of x1, . . . , xk. Moreover, p(

∑k
i=1 aixi) =

∑k
i=1 a

n
i . Let us suppose

that p is reducible. Since k > n, each divisor of p is a symmetric polynomial [8]. On the
other hand, every symmetric polynomial can be represented by an algebraic combination of
polynomials qr, where qr(

∑k
i=1 aixi) =

∑k
i=1 a

r
i , r = 1, . . . , n − 1 ([6], p. 79). Since p = qn,

this contradicts to the algebraic independence of q1, . . . , qn.

Thus from Proposition 4 it follows that if p is a reducible n-homogeneous polynomial
then there are at most n linearly independent p-orthonormal vectors.
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Theorem 5. Let X be a complex infinite-dimensional linear space. Then for each polynomial
p : X → C there is an infinite-dimensional subspace Z ⊂ X such that the restriction of p on
Z is a product of one-degree polynomials.

Proof. From Theorem A it follows that there exists an affine subspace Z1 of infinite dimension
such that ker p ⊃ Z1. We can suppose that Z1 is not a proper subspace of any affine subspace
in zero set of p. Let Z be some linear subspace of X, Z ⊃ Z1 and Z1 be a hyperplane in
Z (i.e. Z has the codimension equal to 1 in Z). Then there is a polynomial q : Z → C,
deg q = 1, such that ker q = Z1. It is clear that q is a divisor of p in Z (see e.g. [3], [9]).
A simple induction shows that we can choose an infinite-dimensional subspace Z such that
there exist polynomials q1, . . . , qn, deg qi = 1, n := deg p and p = q1 . . . qn on Z.

Corollary 6. Every continuous polynomial on a complex Banach space is weakly continuous
polynomial of the same degree on some infinite-dimensional subspace.

Proof. It is evident that every product of one-degree polynomials is weakly continuous. Thus,
we can use Theorem 5.
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