Biswas T.

(p, q) TH ORDER ORIENTED GROWTH MEASUREMENT OF COMPOSITE p-ADIC ENTIRE FUNCTIONS

Let \mathbb{K} be a complete ultrametric algebraically closed field and let $\mathcal{A}(\mathbb{K})$ be the \mathbb{K}-algebra of entire functions on \mathbb{K}. For any p-adic entire function $f \in \mathcal{A}(\mathbb{K})$ and $r>0$, we denote by $|f|(r)$ the number $\sup \{|f(x)|:|x|=r\}$, where $|\cdot|(r)$ is a multiplicative norm on $\mathcal{A}(\mathbb{K})$. For any two entire functions $f \in \mathcal{A}(\mathbb{K})$ and $g \in \mathcal{A}(\mathbb{K})$ the ratio $\frac{|f|(r)}{|g|(r)}$ as $r \rightarrow \infty$ is called the comparative growth of f with respect to g in terms of their multiplicative norms. Likewise to complex analysis, in this paper we define the concept of (p, q) th order (respectively (p, q) th lower order) of growth as $\rho^{(p, q)}(f)=\limsup _{r \rightarrow+\infty} \frac{\log ^{[p]}|f|(r)}{\log ^{[q]} r}$ (respectively $\lambda^{(p, q)}(f)=\liminf _{r \rightarrow+\infty} \frac{\log ^{[p]}|f|(r)}{\log ^{[q]} r}$), where p and q are any two positive integers. We study some growth properties of composite p-adic entire functions on the basis of their (p, q) th order and (p, q) th lower order.

Key words and phrases: p-adic entire function, growth, (p, q) th order, (p, q) th lower order, composition.

Rajbari, Rabindrapalli, R. N. Tagore Road, P.O. Krishnagar, Dist-Nadia, 741101, West Bengal, India
E-mail: tanmaybiswas_math@rediffmail.com

INTRODUCTION AND DEFINITIONS

Let \mathbb{K} be an algebraically closed field of characteristic 0 , complete with respect to a p-adic absolute value $|\cdot|$ (example \mathbb{C}_{p}). For any $\alpha \in \mathbb{K}$ and $R \in(0,+\infty)$, the closed disk $\{x \in \mathbb{K}$: $|x-\alpha| \leq R\}$ and the open disk $\{x \in \mathbb{K}:|x-\alpha|<R\}$ are denoted by $d(\alpha, R)$ and $d\left(\alpha, R^{-}\right)$ respectively. Also $C(\alpha, r)$ denotes the circle $\{x \in \mathbb{K}:|x-\alpha|=r\}$. Moreover $\mathcal{A}(\mathbb{K})$ represent the \mathbb{K}-algebra of analytic functions on \mathbb{K}, i.e. the set of power series with an infinite radius of convergence. For the most comprehensive study of analytic functions inside a disk or in the whole field \mathbb{K}, we refer the reader to the books $[9,10,15,18]$. During the last several years the ideas of p-adic analysis have been studied from different aspects and many important results were gained (see [1-6], [8, 11-14,19]).

Let $f \in \mathcal{A}(\mathbb{K})$ and $r>0$, then we denote by $|f|(r)$ the number $\sup \{|f(x)|:|x|=r\}$ where $|\cdot|(r)$ is a multiplicative norm on $\mathcal{A}(\mathbb{K})$. For any two entire functions $f \in \mathcal{A}(\mathbb{K})$ and $g \in \mathcal{A}(\mathbb{K})$ the ratio $\frac{|f|(r)}{\mid g(r)}$ as $r \rightarrow \infty$ is called the growth of f with respect to g in terms of their multiplicative norms.

For any $x \in[0, \infty)$ and $k \in \mathbb{N}$, we define recursively $\log ^{[k]} x=\log \left(\log ^{[k-1]} x\right)$ and $\exp ^{[k]} x=\exp \left(\exp ^{[k-1]} x\right)$, where \mathbb{N} stands for the set of all positive integers. We also denote $\log ^{[0]} x=x$ and $\exp ^{[0]} x=x$. Throughout the paper, log denotes the Neperian logarithm.

Taking this into account the order (resp. lower order) of an entire function $f \in \mathcal{A}(\mathbb{K})$ is given by (see [4])

$$
\underset{\lambda(f)}{\rho(f)}=\lim _{r \rightarrow+\infty} \sup _{\inf } \frac{\log ^{[2]}|f|(r)}{\log r}
$$

The above definition of order (resp. lower order) does not seem to be feasible if an entire function $f \in \mathcal{A}(\mathbb{K})$ is of order zero. To overcome this situation and in order to study the growth of an entire function $f \in \mathcal{A}(\mathbb{K})$ precisely, one may introduce the concept of logarithmic order (resp. logarithmic lower order) by increasing $\log ^{+}$once in the denominator following the classical definition of logarithmic order (see, for example, [7]). Therefore the logarithmic order $\rho_{\log }(f)$ and logarithmic lower order $\lambda_{\log }(f)$ of an entire function $f \in \mathcal{A}(\mathbb{K})$ are define as

$$
\underset{\log }{\rho_{\log }(f)}(f)=\lim _{r \rightarrow+\infty} \sup _{\inf } \frac{\log ^{[2]}|f|(r)}{\log ^{[2]} r}
$$

Further the concept of (p, q) th order (p and q are any two positive integers with $p \geq q$) is not new and was first introduced by Juneja et al. [16, 17]. In the line of Juneja et al. [16, 17], now we shall introduce the definitions of (p, q) th order and (p, q) th lower order respectively of an entire function $f \in \mathcal{A}(\mathbb{K})$ where $p, q \in \mathbb{N}$. In order to keep accordance with the definition of logarithmic order we will give a minor modification to the original definition of (p, q)-order introduced by Juneja et al. [16,17].
Definition 1. Let $f \in \mathcal{A}(\mathbb{K})$ and $p, q \in \mathbb{N}$. Then the (p, q) th order and (p, q) th lower order of f are respectively defined as:

$$
\begin{aligned}
& \rho^{(p, q)}(f) \\
& (f)
\end{aligned}=\lim _{r \rightarrow+\infty} \sup _{\inf } \frac{\log ^{[p]}|f|(r)}{\log ^{[q]} r} .
$$

These definitions extend the generalized order $\rho^{[l]}(f)$ and generalized lower order $\lambda^{[l]}(f)$ of $f \in \mathcal{A}(\mathbb{K})$ for each integer $l \geq 2$ since these correspond to the particular case $\rho^{[l]}(f)=$ $\rho^{(l, 1)}(f)$ and $\lambda^{[l]}(f)=\lambda^{(l, 1)}(f)$. Clearly $\rho^{(2,1)}(f)=\rho(f)$ and $\lambda^{(2,1)}(f)=\lambda(f)$. The above definition avoid the restriction $p>q$ and give the idea of generalized logarithmic order.

However in this connection we just introduce the following definition which is analogous to the definition of Juneja et al. [16, 17].
Definition 2. An entire function $f \in \mathcal{A}(\mathbb{K})$ is said to have index-pair (p, q), where p and $q \in \mathbb{N}$, if $b<\rho^{(p, q)}(f)<\infty$ and $\rho^{(p-1, q-1)}(f)$ is not a nonzero finite number, where $b=1$ if $p=q$ and $b=0$ otherwise. Moreover if $0<\rho^{(p, q)}(f)<\infty$, then

$$
\begin{cases}\rho^{(p-n, q)}(f)=\infty & \text { for } n<p \\ \rho^{(p, q-n)}(f)=0 & \text { for } n<q, \\ \rho^{(p+n, q+n)}(f)=1 & \text { for } n=1,2, \ldots\end{cases}
$$

Similarly for $0<\lambda^{(p, q)}(f)<\infty$, one can easily verify that

$$
\begin{cases}\lambda^{(p-n, q)}(f)=\infty & \text { for } n<p \\ \lambda^{(p, q-n)}(f)=0 & \text { for } n<q, \\ \lambda^{(p+n, q+n)}(f)=1 & \text { for } n=1,2, \ldots\end{cases}
$$

The main aim of this paper is to establish some results related to the growth properties of composite p-adic entire functions on the basis of (p, q) th order and (p, q) th lower order, where $p, q \in \mathbb{N}$.

In this section we present the following lemma which can be found in [4] or [5] and will be needed in the sequel.

Lemma 1. Let $f, g \in \mathcal{A}(\mathbb{K})$. Then for all sufficiently large values of r the following equality holds

$$
|f \circ g|(r)=|f|(|g|(r)) .
$$

2 MAIN RESULTS

Theorem 1. Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $\rho^{(m, n)}(g)<\lambda^{(p, q)}(f) \leq \rho^{(p, q)}(f)<\infty$, where $p, q, m, n \in \mathbb{N}$. Then

$$
\text { (i) } \quad \lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-1]}|f|\left(\exp ^{[q-1]} r\right)}=0 \quad \text { if } q \geq m
$$

and

$$
\text { (ii) } \quad \lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-1]}|f|\left(\exp ^{[q-1]} r\right)}=0 \quad \text { if } q<m \text {. }
$$

Proof. We get from Lemma 1, for all sufficiently large positive numbers of r that

$$
\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)=\log { }^{[p]}|f|\left(|g|\left(\exp ^{[n-1]} r\right)\right)
$$

i.e.,

$$
\begin{equation*}
\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]}|g|\left(\exp ^{[n-1]} r\right) . \tag{1}
\end{equation*}
$$

Now the following two cases may arise.
Case I. Let $q \geqslant m$. Then we have from (1) for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[m-1]}|g|\left(\exp ^{[n-1]} r\right) \tag{2}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right) r^{\left(\rho^{(m, n)}(g)+\varepsilon\right)} \tag{3}
\end{equation*}
$$

Case II. Let $q<m$. Then for all sufficiently large positive numbers of r we get from (1) that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right) \exp ^{[m-q]} \log ^{[m]}|g|\left(\exp ^{[n-1]} r\right) \tag{4}
\end{equation*}
$$

Further for all sufficiently large positive numbers of r, it follows that

$$
\log ^{[m]}|g|\left(\exp ^{[n-1]} r\right) \leqslant \log \left(r^{\rho^{(m, n)}(g)+\varepsilon}\right)
$$

i.e.,

$$
\begin{equation*}
\exp ^{[m-q]} \log ^{[m]}|g|\left(\exp ^{[n-1]} r\right) \leqslant \exp ^{[m-q-1]}\left(r^{\rho^{(m, n)}(g)+\varepsilon}\right) \tag{5}
\end{equation*}
$$

Now from (4) and (5) we have for all sufficiently large positive numbers of r that

$$
\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \leq\left(\rho^{(p, q)}(f)+\varepsilon\right) \exp ^{[m-q-1]}\left(r^{\rho^{(m, n)}(g)+\varepsilon}\right)
$$

i.e.,

$$
\log ^{[p+1]}|f \circ g|\left(\exp ^{[n-1]} r\right) \leqslant \exp ^{[m-q-2]}\left(r^{\rho^{(m, n)}(g)+\varepsilon}\right)+O(1)
$$

i.e.,

$$
\log ^{[p+1]}|f \circ g|\left(\exp ^{[n-1]} r\right) \leqslant \exp ^{[m-q-2]}\left(r^{\rho^{(m, n)}(g)+\varepsilon}\right)\left(1+\frac{O(1)}{\exp ^{[m-q-2]}\left(r^{\rho^{(m, n)}(g)+\varepsilon}\right)}\right)
$$

i.e.,

$$
\begin{equation*}
\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right) \leqslant r^{\rho_{g}(m, n)+\varepsilon}\left(1+\frac{O(1)}{\exp ^{[m-q-2]}\left(r^{\rho^{(m, n)}(g)+\varepsilon}\right)}\right) \tag{6}
\end{equation*}
$$

Also from the definition of $\lambda^{(p, q)}(f)$, we get for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[p-1]}|f|\left(\exp ^{[q-1]} r\right) \geqslant r^{\left(\lambda^{(p, q)}(f)-\varepsilon\right)} \tag{7}
\end{equation*}
$$

Now combining (3) of Case I and (7) we get for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\frac{\log { }^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-1]}|f|\left(\exp ^{[q-1]} r\right)} \leq \frac{\left(\rho_{f}(p, q)+\varepsilon\right) r^{\left(\rho^{(m, n)}(g)+\varepsilon\right)}}{r^{\left(\lambda^{(p, q)}(f)-\varepsilon\right)}} \tag{8}
\end{equation*}
$$

Since $\rho^{(m, n)}(g)<\lambda^{(p, q)}(f)$ we can choose $\varepsilon(>0)$ in such a way that

$$
\begin{equation*}
\rho^{(m, n)}(g)+\varepsilon<\lambda^{(p, q)}(f)-\varepsilon . \tag{9}
\end{equation*}
$$

Therefore in view of (9) it follows from (8) that

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-1]}|f|\left(\exp ^{[q-1]} r\right)}=0
$$

Hence the first part of the theorem follows.
Further combining (6) of Case II and (7) we obtain for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-1]}|f|\left(\exp ^{[q-1]} r\right)} \leq \frac{r^{\rho^{(m, n)}(g)+\varepsilon}\left(1+\frac{O(1)}{\exp ^{[m-q-2]}\left(r^{(m, n)}(g)+\varepsilon\right)}\right)}{r^{\left(\lambda^{(p, q)}(f)-\varepsilon\right)}} . \tag{10}
\end{equation*}
$$

Therefore in view of (9) we get from above that

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-1]}|f|\left(\exp { }^{[q-1]} r\right)}=0
$$

Thus the theorem follows.
Theorem 2. Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $\lambda^{(m, n)}(g)<\lambda^{(p, q)}(f) \leq \rho^{(p, q)}(f)<\infty$, where $p, q, m, n \in \mathbb{N}$. Then

$$
\text { (i) } \quad \underset{r \rightarrow+\infty}{ } \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-1]}|f|\left(\exp ^{[q-1]} r\right)}=0 \quad \text { if } q \geq m
$$

and

$$
\text { (ii) } \quad \underset{r \rightarrow+\infty}{ } \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-1]}|f|\left(\exp ^{[q-1]} r\right)}=0 \quad \text { if } q<m \text {. }
$$

The proof of Theorem 2 is omitted as it can be carried out in the line of Theorem 1.
Theorem 3. Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $0<\lambda^{(p, q)}(f) \leq \rho^{(p, q)}(f)<\infty$ and $\rho^{(m, n)}(g)<\infty$, where $p, q, m, n \in \mathbb{N}$. Then

$$
\text { (i) } \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p]}|f|\left(\exp ^{[q-1]} r\right)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)} \quad \text { if } q \geq m
$$

and

$$
\text { (ii) } \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p]}|f|\left(\exp ^{[q-1]} r\right)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda(p, q)}(f) \quad \text { if } q<m \text {. }
$$

Proof. In view of the definition $\lambda^{(p, q)}(f)$, we have for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[p]}|f|\left(\exp ^{[q-1]} r\right) \geq\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log r . \tag{11}
\end{equation*}
$$

Case I. If $q \geqslant m$, then from (3) and (11) we get for all sufficiently large positive numbers of r that

$$
\frac{\log ^{[p+1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p]}|f|\left(\exp { }^{[q-1]} r\right)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log r+\log \left(\rho^{(p, q)}(f)+\varepsilon\right)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log r}
$$

As $\varepsilon(>0)$ is arbitrary, it follows from above that

$$
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p]}|f|\left(\exp ^{[q-1]} r\right)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)} .
$$

This proves the first part of the theorem.
Case II. If $q<m$ then from (6) and (11) we obtain for all sufficiently large positive numbers of r that

$$
\frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p]}|f|\left(\exp ^{[q-1]} r\right)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log r+\log \left(1+\frac{O(1)}{\exp ^{[m-q-2]}\left(r^{\rho^{(m, n)}(g)+\varepsilon}\right)}\right)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log r} .
$$

As $\varepsilon(>0)$ is arbitrary, it follows from above that

$$
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p]}|f|\left(\exp ^{[q-1]} r\right)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)} .
$$

Thus the second part of the theorem is established.
Theorem 4. Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $0<\lambda^{(p, q)}(f) \leq \rho^{(p, q)}(f)<\infty$ and $\lambda^{(m, n)}(g)>0$, where $p, q, m, n \in \mathbb{N}$. Then for any positive integer l, we have
(i) $\quad \lim _{r \rightarrow \infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p+1]}|f|\left(\exp ^{[l]} r\right)}=\infty \quad$ if $q<m$ and $q \geqslant l$;
(ii) $\quad \lim _{r \rightarrow \infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-q-l+1]}|f|\left(\exp ^{[l]} r\right)}=\infty \quad$ if $q<m$ and $q<l$;
(iii) $\quad \lim _{r \rightarrow \infty} \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p+1]}|f|\left(\exp ^{[l]} r\right)}=\infty \quad$ if $q>m$ and $q<l$;
and

$$
\text { (iv) } \quad \lim _{r \rightarrow \infty} \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p+1]}|f|\left(\exp ^{[l]} r\right)}=\infty \quad \text { if } q>m \text { and } q \geqslant l \text {. }
$$

Proof. Let us choose $0<\varepsilon<\min \left\{\lambda^{(p, q)}(f), \lambda^{(m, n)}(g)\right\}$. Now for all sufficiently large positive numbers of r we get from Lemma 1,

$$
\begin{equation*}
\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \geqslant\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]}|g|\left(\exp ^{[n-1]} r\right) \tag{12}
\end{equation*}
$$

Further from the definition of (m, n) th lower order of g we have for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[m]}|g|\left(\exp ^{[n-1]} r\right) \geqslant \log r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)} \tag{13}
\end{equation*}
$$

Now the following two cases may arise.
Case I. Let $q<m$. Then from (12) and (13) we obtain for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log { }^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \geqslant\left(\lambda^{(p, q)}(f)-\varepsilon\right) \exp ^{[m-q]} \log ^{[m]}|g|\left(\exp ^{[n-1]} r\right) \tag{14}
\end{equation*}
$$

i.e.,

$$
\begin{align*}
& \log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \geqslant\left(\lambda^{(p, q)}(f)-\varepsilon\right) \exp ^{[m-q]} \log r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)} \\
& \log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \geqslant\left(\lambda^{(p, q)}(f)-\varepsilon\right) \exp ^{[m-q-1]} r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)} . \tag{15}
\end{align*}
$$

Case II. Let $q>m$. Then from (12) and (13) it follows for all sufficiently large positive numbers of r that

$$
\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right) \geqslant\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log { }^{[q-m]} \log r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)}
$$

i.e.,

$$
\begin{equation*}
\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right) \geqslant r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)} . \tag{16}
\end{equation*}
$$

Again from the definition of $\rho^{(p, q)}(f)$ we get for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[p]}|f|\left(\exp ^{[l]} r\right) \leq\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} \exp ^{[l]} r \tag{17}
\end{equation*}
$$

Now the following two cases may arise.
Case III. Let $q \geqslant l$. Then we have from (17) for all sufficiently large positive numbers of r that

$$
\log ^{[p]}|f|\left(\exp ^{[l]} r\right) \leq\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-l]} r
$$

i.e.,

$$
\begin{equation*}
\log ^{[p+1]}|f|\left(\exp ^{[l]} r\right) \leq \log ^{[q-l+1]} r+\log \left(\rho^{(p, q)}(f)+\varepsilon\right) . \tag{18}
\end{equation*}
$$

Case IV. Let $q<l$. Then we have from (17) for all sufficiently large positive numbers of r that

$$
\log ^{[p]}|f|\left(\exp ^{[l]} r\right) \leq\left(\rho^{(p, q)}(f)+\varepsilon\right) \exp ^{[l-q]} r
$$

i.e.,

$$
\log ^{[p+1]}|f|\left(\exp ^{[l]} r\right) \leq \exp ^{[l-q-1]} r+\log \left(\rho^{(p, q)}(f)+\varepsilon\right)
$$

i.e.,

$$
\begin{equation*}
\log ^{[p-q+l+1]}|f|\left(\exp ^{[l]} r\right) \leq \log r+O(1) \tag{19}
\end{equation*}
$$

Now combining (15) of Case I and (18) of Case III it follows for all sufficiently large positive numbers of r that

$$
\frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p+1]}|f|\left(\exp ^{[l]} r\right)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \exp ^{[m-q-1]} r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)}}{\log ^{[q-l+1]} r+\log \left(\rho^{(p, q)}(f)+\varepsilon\right)}
$$

Since $q<m$, we get from the above that

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p+1]}|f|\left(\exp ^{[l]} r\right)}=\infty .
$$

This proves the first part of the theorem.
Again in view of (15) of Case I and (19) of Case IV we have for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-q+l+1]}|f|\left(\exp ^{[l]} r\right)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \exp ^{[m-q-1]} r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)}}{\log r+O(1)} \tag{20}
\end{equation*}
$$

When $q<m$ and $q<l$ then we get from (20) that

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-q+l+1]}|f|\left(\exp ^{[l]} r\right)}=\infty .
$$

This establishes the second part of the theorem.
Now in view of (16) of Case II and (18) of Case III we get for all sufficiently large positive numbers of r that

$$
\frac{\log { }^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p+1]}|f|\left(\exp ^{[l]} r\right)} \geq \frac{r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)}}{\log ^{[q-l+1]} r+\log \left(\rho^{(p, q)}(f)+\varepsilon\right)}
$$

i.e.,

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p+1]}|f|\left(\exp ^{[l]} r\right)}=\infty,
$$

from which the third part of the theorem follows.
Again from (16) of Case II and (19) of Case IV we have for all sufficiently large positive numbers of r that

$$
\frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-q+l+1]}|f|\left(\exp ^{[l]} r\right)} \geq \frac{r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)}}{\log r+O(1)}
$$

i.e.,

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[p-q+l+1]}|f|\left(\exp ^{[l]} r\right)}=\infty
$$

This proves the fourth part of the theorem. Thus the theorem follows.

Theorem 5. Let $f, g, h, k \in \mathcal{A}(\mathbb{K})$ be such that $0<\rho^{(a, b)}(h)<\infty, \lambda^{(p, q)}(f)>0, \lambda^{(m, n)}(g)>0$ and $\rho^{(c, d)}(k)<\lambda^{(m, n)}(g)$, where $a, b, c, d, p, q, m, n \in \mathbb{N}$. Then

> (i) $\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a]}|h \circ k|(r)}=\infty \quad$ if $b \geqslant c$ and $q<m$,
> (ii) $\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a+c-b-1]}|h \circ k|(r)}=\infty \quad$ if $b<c$ and $q<m$,
> (iii) $\lim _{r \rightarrow+\infty} \frac{\left.\log ^{[p+m-q-1]}|f \circ g| \mid \exp ^{[n-1]} r\right)}{\log ^{[a]}|h \circ k|(r)}=\infty \quad$ if $b \geqslant c$ and $q \geqslant m$,
> and (iv) $\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a+c-b-1]}|h \circ k|(r)}=\infty \quad$ if $b<c$ and $q \geqslant m$.

Proof. In view of Lemma 1 we obtain for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[a]}|h \circ k|(r) \leqslant\left(\rho^{(a, b)}(h)+\varepsilon\right) \log ^{[b]}|k|(r) \tag{21}
\end{equation*}
$$

Now from the definition of (c, d) th order of k we get for arbitrary positive ε and for all sufficiently large positive numbers of r that

$$
\log ^{[c]}|k|(r) \leqslant\left(\rho^{(c, d)}(k)+\varepsilon\right) \log ^{[d]} r
$$

i.e.,

$$
\begin{equation*}
\log ^{[c]}|k|(r) \leqslant\left(\rho^{(c, d)}(k)+\varepsilon\right) \log r \tag{22}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\log ^{[c-1]}|k|(r) \leqslant r^{\left(\rho^{(c, d)}(k)+\varepsilon\right)} \tag{23}
\end{equation*}
$$

Now the following cases may arise.
Case I. Let $b \geqslant c$. Then we have from (21) for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[a]}|h \circ k|(r) \leqslant\left(\rho^{(a, b)}(h)+\varepsilon\right) \log ^{[c-1]}|k|(r) \tag{24}
\end{equation*}
$$

So from (23) and (24), it follows for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[a]}|h \circ k|(r) \leqslant\left(\rho^{(a, b)}(h)+\varepsilon\right) r^{\left(\rho^{(c, d)}(k)+\varepsilon\right)} . \tag{25}
\end{equation*}
$$

Case II. Let $b<c$. Then we get from (21) for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[a]}|h \circ k|(r) \leqslant\left(\rho^{(a, b)}(h)+\varepsilon\right) \exp ^{[c-b]} \log ^{[c]}|k|(r) \tag{26}
\end{equation*}
$$

Now from (22) and (26) we obtain for all sufficiently large positive numbers of r that

$$
\log ^{[a]}|h \circ k|(r) \leqslant\left(\rho^{(a, b)}(h)+\varepsilon\right) \exp ^{[c-b]} \log r r^{\left(\rho^{(c, d)}(k)+\varepsilon\right)}
$$

i.e.,

$$
\begin{equation*}
\log ^{[a+c-b-1]}|h \circ k|(r) \leqslant r^{\left(\rho^{(c, d)}(k)+\varepsilon\right)}+O(1) . \tag{27}
\end{equation*}
$$

Since $\rho^{(c, d)}(k)<\lambda^{(m, n)}(g)$ we can choose $\varepsilon(>0)$ in such a way that

$$
\begin{equation*}
\rho^{(c, d)}(k)+\varepsilon<\lambda^{(m, n)}(g)-\varepsilon . \tag{28}
\end{equation*}
$$

Now combining (25) of Case I, (15) and in view of (28) it follows for all sufficiently large positive numbers of r that

$$
\frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[[]]}|h \circ k|(r)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \exp ^{[m-q-1]} r^{\left.\left(\lambda^{(n, n)}\right)(g)-\varepsilon\right)}}{\left(\rho^{(a, b)}(h)+\varepsilon\right) r^{\left(\rho^{(c, r)}(k)+\varepsilon\right)}}
$$

i.e.,

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a]}|h \circ k|(r)}=\infty,
$$

from which the first part of the theorem follows.
Again combining (27) of Case II, (15) and in view of (28) we obtain for all sufficiently large positive numbers of r that

$$
\frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a+c-b-1]}|h \circ k|(r)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \exp ^{[m-q-1]} r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)}}{r^{\left(\rho^{(c, d)}(k)+\varepsilon\right)}+O(1)}
$$

i.e.,

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a+c-b-1]}|h \circ k|(r)}=\infty .
$$

This establishes the second part of the theorem.
Further in view of (25) of Case I and (16) we get for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a]}|h \circ k|(r)} \geq \frac{r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)}}{\left(\rho^{(a, b)}(h)+\varepsilon\right) r^{\left(\rho^{(c, d)}(k)+\varepsilon\right)}} . \tag{29}
\end{equation*}
$$

So from (28) and (29) we obtain that

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a]}|h \circ k|(r)}=\infty,
$$

from which the third part of the theorem follows.
Again combining (27) of Case II and (16) it follows for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a+c-b-1]}|h \circ k|(r)} \geq \frac{r^{\left(\lambda^{(m, n)}(g)-\varepsilon\right)}}{r^{\left(\rho^{(c, d)}(k)+\varepsilon\right)}+O(1)} . \tag{30}
\end{equation*}
$$

Now in view of (28) we obtain from (30) that

$$
\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q-1]}|f \circ g|\left(\exp ^{[n-1]} r\right)}{\log ^{[a+c-b-1]}|h \circ k|(r)}=\infty
$$

This proves the fourth part of the theorem. Thus the theorem follows.

Theorem 6. Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $\rho^{(a, b)}(f \circ g)<\infty$ and $\lambda^{(m, n)}(g)>0$, where $a, b, m, n \in \mathbb{N}$. Then

$$
\lim _{r \rightarrow+\infty} \frac{\left[\log ^{[a]}|f \circ g|\left(\exp ^{[b-1]} r\right)\right]^{2}}{\log ^{[m-1]}|g|\left(\exp ^{[n]} r\right) \cdot \log ^{[m]}|g|\left(\exp ^{[n-1]} r\right)}=0
$$

Proof. For any $\varepsilon>0$ we have $\log ^{[a]}|f \circ g|\left(\exp ^{[b-1]} r\right) \leq\left(\rho^{(a, b)}(f \circ g)+\varepsilon\right) \log ^{[b]} \exp ^{[b-1]} r$, i.e.,

$$
\begin{equation*}
\log ^{[a]}|f \circ g|\left(\exp ^{[b-1]} r\right) \leq\left(\rho^{(a, b)}(f \circ g)+\varepsilon\right) \log r \tag{31}
\end{equation*}
$$

Again we obtain that $\log ^{[m]}|g|\left(\exp ^{[n-1]} r\right) \geq\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} \exp ^{[n-1]} r$, i.e.,

$$
\begin{equation*}
\log ^{[m]}|g|\left(\exp ^{[n-1]} r\right) \geq\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log r \tag{32}
\end{equation*}
$$

Similarly we have $\log ^{[m]}|g|\left(\exp ^{[n]} r\right) \geq\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} \exp ^{[n]} r$, i.e.,

$$
\begin{equation*}
\log ^{[m-1]}|g|\left(\exp ^{[n]} r\right) \geq \exp \left[\left(\lambda^{(m, n)}(g)-\varepsilon\right) r\right] \tag{33}
\end{equation*}
$$

From (31) and (32) we have for all sufficiently large positive numbers of r that

$$
\frac{\log ^{[a]}|f \circ g|\left(\exp ^{[b-1]} r\right)}{\log ^{[m]}|g|\left(\exp ^{[n-1]} r\right)} \leq \frac{\left(\rho^{(a, b)}(f \circ g)+\varepsilon\right) \log r}{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log r}
$$

As $\varepsilon(>0)$ is arbitrary we obtain from the above that

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[a]}|f \circ g|\left(\exp ^{[b-1]} r\right)}{\log ^{[m]}|g|\left(\exp ^{[n-1]} r\right)} \leq \frac{\rho^{(a, b)}(f \circ g)}{\lambda^{(m, n)}(g)} . \tag{34}
\end{equation*}
$$

Again from (31) and (33) we get for all sufficiently large positive numbers of r that

$$
\frac{\log ^{[a]}|f \circ g|\left(\exp ^{[b-1]} r\right)}{\log ^{[m-1]}|g|\left(\exp ^{[n]} r\right)} \leq \frac{\left(\rho^{(a, b)}(f \circ g)+\varepsilon\right) \log r}{\exp \left[\left(\lambda^{(m, n)}(g)-\varepsilon\right) r\right]}
$$

Since $\varepsilon(>0)$ is arbitrary it follows from the above that

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[a]}|f \circ g|\left(\exp ^{[b-1]} r\right)}{\log ^{[m-1]}|g|\left(\exp ^{[n]} r\right)}=0 \tag{35}
\end{equation*}
$$

Thus the theorem follows from (34) and (35).
Theorem 7. Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $0<\lambda^{(p, q)}(f) \leq \rho^{(p, q)}(f)<\infty$ and $0<\lambda^{(m, n)}(g) \leq$ $\rho^{(m, n)}(g)<\infty$, where $p, q, m, n \in \mathbb{N}$. Then
(i) $\frac{\lambda^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \leq \lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \min \left\{\rho^{(m, n)}(g), \frac{\rho^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}\right\}$;

$$
\max \left\{\lambda^{(m, n)}(g), \frac{\lambda^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} \leq \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leq \frac{\rho^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)},
$$

when $q=m=n$,
(ii) $\frac{\lambda^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \leq \varliminf_{r \rightarrow+\infty} \frac{\operatorname{lig}^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \min \left\{\rho^{(m, n)}(g), \frac{\rho^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}\right\}$;
$\max \left\{\lambda^{(m, n)}(g), \frac{\lambda^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} \leq \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leq \frac{\rho^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)}$,
when $q=m>$ or $<n$,

$$
\begin{array}{r}
\frac{\lambda^{(p, q)}(f)}{\rho^{(p, q)}(f)} \leq \lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \leqslant \min \left\{1, \frac{\rho^{(p, q)}(f)}{\lambda^{(p, q)}(f)}\right\} ; \tag{iii}\\
\max \left\{1, \frac{\lambda^{(p, q)}(f)}{\rho^{(p, q)}(f)}\right\} \leq \overline{\lim }_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \leq \frac{\rho^{p, q)}(f)}{\lambda^{(p, q)}(f)},
\end{array}
$$

when $q>m$,
(iv) $\frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \leq \underset{r \rightarrow+\infty}{\lim } \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \min \left\{\frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\}$

$$
\leq \max \left\{\frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} \leq \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leq \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)},
$$

when $m>q=n$,
(v) $\frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \leq \underset{r \rightarrow+\infty}{\lim } \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp { }^{[q-n]} r\right)} \leqslant \min \left\{\frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\}$

$$
\left.\leq \max \left\{\frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} \leq \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(\exp [q-n]} r\right) \quad \leq \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)}
$$

when $m>q>n$, and
(vi) $\frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \leq \lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|\left(\exp { }^{[q-n]} r\right)} \leqslant \min \left\{\frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\}$

$$
\begin{aligned}
& \leq \max \left\{\frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} \leq \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|\left(\exp { }^{[q-n]} r\right)} \\
& \leq \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)}
\end{aligned}
$$

when $m>q<n$.
Proof. From the definitions of (p, q) th order and (p, q) th lower order of f, we have for all sufficiently large positive numbers of r that

$$
\begin{align*}
\log ^{[p]}|f| & \leq\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r, \tag{36}\\
\log ^{[p]}|f| & \geq\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r \tag{37}
\end{align*}
$$

and also for a sequence of positive numbers of r tending to infinity we get that

$$
\begin{align*}
\log ^{[p]}|f| & \geq\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r, \tag{38}\\
\log ^{[p]}|f| & \leq\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r . \tag{39}
\end{align*}
$$

Now in view of Lemma 1, we have for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]}|g|(r) \tag{40}
\end{equation*}
$$

and also we get for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \leqslant\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[q]}|g|(r) \tag{41}
\end{equation*}
$$

Similarly, in view of Lemma 1, it follows for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \geq\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]}|g|(r) \tag{42}
\end{equation*}
$$

and also we obtain for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \geq\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q]}|g|(r) \tag{43}
\end{equation*}
$$

Now the following two cases may arise.
Case I. Let $q=m=n$. Then we have from (40) for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r, \tag{44}
\end{equation*}
$$

and for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\lambda^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r \tag{45}
\end{equation*}
$$

Also we obtain from (41) for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \leqslant\left(\lambda^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r . \tag{46}
\end{equation*}
$$

Further it follows from (42) for all sufficiently large positive numbers of r that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \geq\left(\lambda^{(p, q)}(f)-\varepsilon\right)\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r, \tag{47}
\end{equation*}
$$

and for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \geq\left(\lambda^{(p, q)}(f)-\varepsilon\right)\left(\rho^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r \tag{48}
\end{equation*}
$$

Moreover, we obtain from (43) for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \geq\left(\rho^{(p, q)}(f)-\varepsilon\right)\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r . \tag{49}
\end{equation*}
$$

Therefore from (37) and (44), we have for all sufficiently large positive numbers of r that

$$
\begin{aligned}
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} & \leqslant \frac{\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r} \\
& =\frac{\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\rho^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)} \tag{50}
\end{equation*}
$$

Similarly from (38) and (44), for a sequence of positive numbers of r tending to infinity it follows that

$$
\begin{align*}
& \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r}{\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r} \\
&=\frac{\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r}{\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}, \\
& \lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \rho^{(m, n)}(g) . \tag{51}
\end{align*}
$$

Also from (37) and (45), we obtain for a sequence of positive numbers of r tending to infinity that

$$
\begin{align*}
& \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\lambda^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r} \\
&=\frac{\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\lambda^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}, \\
& \underline{\lim _{r+\infty}} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\rho^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \tag{52}
\end{align*}
$$

Further from (37) and (46), for a sequence of positive numbers of r tending to infinity we have that

$$
\begin{align*}
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} & \leqslant \frac{\left(\lambda^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r} \\
& =\frac{\left(\lambda^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}, \\
\lim _{r \rightarrow+\infty} & \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \rho^{(m, n)}(g) \tag{53}
\end{align*}
$$

Thus from (51), (52) and (53) it follows that

$$
\begin{equation*}
\underline{\lim }_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \min \left\{\rho^{(m, n)}(g), \frac{\rho^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}\right\} . \tag{54}
\end{equation*}
$$

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right)\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\lambda^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} . \tag{55}
\end{equation*}
$$

Similarly, from (39) and (47) we obtain that

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \lambda^{(m, n)}(g) \tag{56}
\end{equation*}
$$

Also from (36) and (48), for a sequence of positive numbers of r tending to infinity we obtain that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right)\left(\rho^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\lambda^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{57}
\end{equation*}
$$

and from (36) and (49), for a sequence of positive numbers of r tending to infinity we have that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\rho^{(p, q)}(f)-\varepsilon\right)\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \lambda^{(m, n)}(g) \tag{5}
\end{equation*}
$$

Thus from (56), (57) and (58) it follows that

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \max \left\{\lambda^{(m, n)}(g), \frac{\lambda^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} \tag{59}
\end{equation*}
$$

Therefore the first part of the theorem follows from (50), (54), (55) and (59).
Case II. Let $q=m$ and $m>n$ or $n<m$. Now from (37) and (44), for all sufficiently large positive numbers of r we have that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\rho^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)} \tag{60}
\end{equation*}
$$

Similarly, from (38) and (44) for a sequence of positive numbers of r tending to infinity it follows that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r}{\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\underline{\lim }_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \rho^{(m, n)}(g) \tag{61}
\end{equation*}
$$

Also from (37) and (45), for a sequence of positive numbers of r tending to infinity we obtain that

$$
\left.\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(\exp [q-n]} r\right) \leqslant \frac{\left(\rho^{(p, q)}(f)+\varepsilon\right)\left(\lambda^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\underline{\lim }_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\rho^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)} \tag{62}
\end{equation*}
$$

and from (37) and (46), for a sequence of positive numbers of r tending to infinity we have that

$$
\left.\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|(\exp [q-n]} r\right) \leqslant \frac{\left(\lambda^{(p, q)}(f)+\varepsilon\right)\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \rho^{(m, n)}(g) \tag{63}
\end{equation*}
$$

Thus from (61), (62) and (63) it follows that

$$
\begin{equation*}
\underset{r \rightarrow+\infty}{\lim } \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \min \left\{\rho^{(m, n)}(g), \frac{\rho^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}\right\} \tag{64}
\end{equation*}
$$

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right)\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \frac{\lambda^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{65}
\end{equation*}
$$

Similarly, from (39) and (47) for a sequence of positive numbers of r tending to infinity it follows that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right)\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r}{\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \lambda^{(m, n)}(g) \tag{66}
\end{equation*}
$$

Also from (36) and (48), for a sequence of positive numbers of r tending to infinity we obtain that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp { }^{[q-n]} r\right)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right)\left(\rho^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \frac{\lambda^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{67}
\end{equation*}
$$

Similarly from (36) and (49), we get that

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \lambda^{(m, n)}(g) \tag{68}
\end{equation*}
$$

Thus from (66), (67) and (68) it follows that

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \max \left\{\lambda^{(m, n)}(g), \frac{\lambda^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} \tag{69}
\end{equation*}
$$

Thus the second part of the theorem follows from (60), (64), (65) and (69).
Case III. Let $q>m$. Then from (40) for all sufficiently large positive numbers of r we have

$$
\log ^{[p]}|f \circ g|(r) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m]}\left[\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r\right]
$$

i.e.,

$$
\begin{equation*}
\log ^{[p]} M(r, f \circ g) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r+O(1) \tag{70}
\end{equation*}
$$

and for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \leqslant\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r+O(1) \tag{71}
\end{equation*}
$$

Also for the same reasoning, from (41) for a sequence of positive numbers of r tending to infinity we obtain that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \leqslant\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r+O(1) . \tag{72}
\end{equation*}
$$

Further from (42), for all sufficiently large positive numbers of r it follows that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \geq\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r+O(1), \tag{73}
\end{equation*}
$$

and for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \geq\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r+O(1) . \tag{74}
\end{equation*}
$$

Moreover from (43) for a sequence of positive numbers of r tending to infinity we obtain that

$$
\begin{equation*}
\log ^{[p]}|f \circ g|(r) \geq\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r+O(1) \tag{75}
\end{equation*}
$$

Now from (37) and (70), for all sufficiently large positive numbers of r we have that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \leqslant \frac{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \leqslant \frac{\rho^{(p, q)}(f)}{\lambda(p, q)}(f) . \tag{76}
\end{equation*}
$$

Similarly, from (38) and (70) for a sequence of positive numbers of r tending to infinity it follows that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \leqslant \frac{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r+O(1)}{\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \leqslant 1 \tag{77}
\end{equation*}
$$

Also from (37) and (71) for a sequence of positive numbers of r tending to infinity we obtain

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \leqslant \frac{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r}
$$

i.e.,

$$
\begin{equation*}
\underline{\lim }_{r \rightarrow+\infty} \frac{\log ^{[p]} M(r, f \circ g)}{\log ^{[p]} M\left(\exp ^{[m-n]} r, f\right)} \leqslant \frac{\rho^{(p, q)}(f)}{\lambda^{(p, q)}(f)}, \tag{78}
\end{equation*}
$$

and from (37) and (72) for a sequence of positive numbers of r tending to infinity also we have

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \leqslant \frac{\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r}
$$

i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]} M(r, f \circ g)}{\log ^{[p]} M\left(\exp ^{[m-n]} r, f\right)} \leqslant 1 \tag{79}
\end{equation*}
$$

Thus from (77), (78) and (79) it follows that

$$
\begin{equation*}
\underline{\lim }_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \leqslant \min \left\{1, \frac{\rho^{(p, q)}(f)}{\lambda^{(p, q)}(f)}\right\} . \tag{80}
\end{equation*}
$$

Further from (36) and (73), for all sufficiently large positive numbers of r we have that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r}
$$

i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \geq \frac{\lambda^{(p, q)}(f)}{\rho^{(p, q)}(f)} \tag{81}
\end{equation*}
$$

Similarly, from (39) and (73) for a sequence of positive numbers of r tending to infinity it follows that

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r+O(1)}{\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \geq 1 \tag{82}
\end{equation*}
$$

Also from (36) and (74), for a sequence of positive numbers of r tending to infinity we obtain

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \geq \frac{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \geq \frac{\lambda^{(p, q)}(f)}{\rho^{(p, q)}(f)}, \tag{83}
\end{equation*}
$$

and from (36) and (75) for a sequence of positive numbers of r tending to infinity also we have

$$
\frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \geq \frac{\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q-m+n]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q-m+n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \geq 1 \tag{84}
\end{equation*}
$$

Thus from (82), (83) and (84) it follows that

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[m-n]} r\right)} \geq \max \left\{1, \frac{\lambda^{(p, q)}(f)}{\rho^{(p, q)}(f)}\right\} \tag{85}
\end{equation*}
$$

Hence the third part of the theorem follows from (76), (80), (65) and (85).
Case IV. Let $m>q=n$. Then from (40) for all sufficiently large positive numbers of r we have

$$
\begin{equation*}
\log ^{[p+m-q]}|f \circ g|(r) \leqslant\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1) \tag{86}
\end{equation*}
$$

and for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p+m-q]}|f \circ g|(r) \leqslant\left(\lambda^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1) \tag{87}
\end{equation*}
$$

Also from (41) for a sequence of positive numbers of r tending to infinity we obtain that

$$
\begin{equation*}
\log ^{[p+m-q]}|f \circ g|(r) \leqslant\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1) \tag{88}
\end{equation*}
$$

Further, from (42) for all sufficiently large positive numbers of r it follows that

$$
\begin{equation*}
\log ^{[p+m-q]}|f \circ g|(r) \geq\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1) \tag{89}
\end{equation*}
$$

and for a sequence of positive numbers of r tending to infinity that

$$
\begin{equation*}
\log ^{[p+m-q]}|f \circ g|(r) \geq\left(\rho^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1) \tag{90}
\end{equation*}
$$

Moreover, from (43) for a sequence of positive numbers of r tending to infinity we obtain that

$$
\begin{equation*}
\log ^{[p+m-q]}|f \circ g|(r) \geq\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1) \tag{91}
\end{equation*}
$$

Therefore from (37) and (86), for all sufficiently large positive numbers of r we have that

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}=\frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda(p, q)}(f) . \tag{92}
\end{equation*}
$$

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it follows that

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}=\frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)} . \tag{93}
\end{equation*}
$$

Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\lambda^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}=\frac{\left(\lambda^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \tag{94}
\end{equation*}
$$

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}=\frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda(p, q)}(f) . \tag{95}
\end{equation*}
$$

Thus from (93), (94) and (95) it follows that

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \leqslant \min \left\{\frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}, \frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)}\right\} . \tag{96}
\end{equation*}
$$

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}=\frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} . \tag{97}
\end{equation*}
$$

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it follows that

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}=\frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\lambda_{g}(m, n)}{\lambda^{(p, q)}(f)} \tag{98}
\end{equation*}
$$

Also from(36) and (90) for a sequence of positive numbers of r tending to infinity we obtain

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\rho^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}=\frac{\left(\rho^{(m, n)}(g)-\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{99}
\end{equation*}
$$

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}=\frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{100}
\end{equation*}
$$

Thus from (98), (99) and (100) it follows that

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(r)} \geq \max \left\{\frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}, \frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} \tag{101}
\end{equation*}
$$

Therefore the fourth part of the theorem follows from (92), (96), (98) and (101).
Case V. Let $m>q>n$. Currently from (37) and (86), we have for all sufficiently large positive numbers of r that

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)} . \tag{102}
\end{equation*}
$$

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it follows that

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)} . \tag{103}
\end{equation*}
$$

Also from (37) and (87), for a sequence of positive numbers of r tending to infinity we obtain that

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(\exp [q-n]} \leqslant \frac{\left(\lambda^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)} \tag{104}
\end{equation*}
$$

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp { }^{[q-n]} r\right)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)} . \tag{105}
\end{equation*}
$$

Thus from (103), (104) and (105) it follows that

$$
\begin{equation*}
\left.\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(\exp [q-n]} r\right) \quad \leqslant \min \left\{\frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}, \frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)}\right\} . \tag{106}
\end{equation*}
$$

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

$$
\left.\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(\exp [q-n]} r\right) \quad \frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} . \tag{107}
\end{equation*}
$$

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it follows that

$$
\left.\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(\exp [q-n]} r\right) \quad \frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp { }^{[q-n]} r\right)} \geq \frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)} . \tag{108}
\end{equation*}
$$

Also from (36) and (90), for a sequence of positive numbers of r tending to infinity we obtain

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \frac{\left(\rho^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp ^{[q-n]} r\right)} \geq \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{109}
\end{equation*}
$$

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

$$
\frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp { }^{[q-n]} r\right)} \geq \frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[n]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[n]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|\left(\exp { }^{[q-n]} r\right)} \geq \frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{110}
\end{equation*}
$$

Thus from (98), (99), and (100) it follows that

$$
\begin{equation*}
\left.\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[p]}|f|(\exp [q-n]} r\right) \quad \max \left\{\frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}, \frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} . \tag{111}
\end{equation*}
$$

Thus the fifth part of the theorem follows from (102), (106), (107) and (111).
Case VI. Let $m>q<n$. At this instant case from (37) and (86) for all sufficiently large positive numbers of r we have that

$$
\frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)} \tag{112}
\end{equation*}
$$

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it follows that

$$
\frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\rho^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \leqslant \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{113}
\end{equation*}
$$

Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

$$
\frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\lambda^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \leqslant \frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)} \tag{114}
\end{equation*}
$$

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

$$
\frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \leqslant \frac{\left(\rho^{(m, n)}(g)+\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\lambda^{(p, q)}(f)-\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \leqslant \frac{\rho^{(m, n)}(g)}{\lambda(p, q)}(f) . \tag{115}
\end{equation*}
$$

Thus from (113), (114) and (115) it follows that

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log [p+m-q]}{}|f \circ g|\left(\exp ^{[n-q]} r\right)\left|\log ^{[p]}\right| f \left\lvert\,(r) \quad \leqslant \min \left\{\frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}, \frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\lambda^{(p, q)}(f)}\right\}\right. \tag{116}
\end{equation*}
$$

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

$$
\frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \geq \frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{117}
\end{equation*}
$$

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it follows that

$$
\frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\lambda^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \geq \frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)} \tag{118}
\end{equation*}
$$

Also from (36) and (90), for a sequence of positive numbers of r tending to infinity we obtain

$$
\frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\rho^{(m, n)}(g)-\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \geq \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}, \tag{119}
\end{equation*}
$$

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

$$
\frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \geq \frac{\left(\lambda^{(m, n)}(g)-\varepsilon\right) \log ^{[q]} r+O(1)}{\left(\rho^{(p, q)}(f)+\varepsilon\right) \log ^{[q]} r}
$$

i.e.,

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \geq \frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)} \tag{120}
\end{equation*}
$$

Thus from (98), (99) and (100) it follows that

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|\left(\exp ^{[n-q]} r\right)}{\log ^{[p]}|f|(r)} \geq \max \left\{\frac{\lambda^{(m, n)}(g)}{\lambda^{(p, q)}(f)}, \frac{\rho^{(m, n)}(g)}{\rho^{(p, q)}(f)}, \frac{\lambda^{(m, n)}(g)}{\rho^{(p, q)}(f)}\right\} \tag{121}
\end{equation*}
$$

Hence the sixth part of the theorem follows from (112), (116), (118) and (121).
Theorem 8. Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $0<\lambda^{(p, q)}(f) \leq \rho^{(p, q)}(f)<\infty$ and $0<\lambda^{(m, n)}(g) \leq$ $\rho^{(m, n)}(g)<\infty$, where $p, q, m, n \in \mathbb{N}$. Then

$$
\begin{align*}
& \frac{\lambda^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\rho^{(m, n)}(g)} \leq \lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[m]}|g|(r)} \leq \min \left\{\rho^{(p, q)}(f), \frac{\lambda^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\lambda^{(m, n)}(g)}\right\} ; \tag{i}\\
& \max \left\{\lambda^{(p, q)}(f), \frac{\rho^{(p, q)}(f) \cdot \lambda^{(m, n)}(g)}{\rho^{(m, n)}(g)}\right\} \leq \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|(r)}{\log ^{[m]}|g|(r)} \leq \frac{\rho^{(p, q)}(f) \cdot \rho^{(m, n)}(g)}{\lambda^{(m, n)}(g)},
\end{align*}
$$

when $q=m$,

$$
\begin{align*}
& \frac{\lambda^{(p, q)}(f)}{\rho^{(m, n)}(g)} \leq \lim _{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[q-m]} r\right)}{\log ^{[m]}|g|(r)} \leq \min \left\{\frac{\rho^{(p, q)}(f)}{\rho^{(m, n)}(g)}, \frac{\rho^{(p, q)}(f)}{\lambda^{(m, n)}(g)}, \frac{\lambda^{(p, q)}(f)}{\lambda^{(m, n)}(g)}\right\} ; \tag{ii}\\
& \max \left\{\frac{\rho^{(p, q)}(f)}{\rho^{(m, n)}(g)}, \frac{\lambda^{(p, q)}(f)}{\rho^{(m, n)}(g)}, \frac{\lambda^{(p, q)}(f)}{\lambda^{(m, n)}(g)}\right\} \leq \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p]}|f \circ g|\left(\exp ^{[q-m]} r\right)}{\log ^{[m]}|g|(r)} \leq \frac{\rho^{(p, q)}(f)}{\lambda^{(m, n)}(g)^{\prime}}
\end{align*}
$$

when $q>m$, and

$$
\begin{equation*}
\frac{\lambda^{(m, n)}(g)}{\rho^{(m, n)}(g)} \leq \varliminf_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[m]}|g|(r)} \leq 1 \leq \varlimsup_{r \rightarrow+\infty} \frac{\log ^{[p+m-q]}|f \circ g|(r)}{\log ^{[m]}|g|(r)} \leq \frac{\rho^{(m, n)}(g)}{\lambda^{(m, n)}(g)^{\prime}}, \tag{iii}
\end{equation*}
$$

when $m>q$.
We omit the proof of Theorem 8 as it can easily be deduced in the line of Theorem 7.

References

[1] Bezivin J. P., Boussaf K., Escassut A. Zeros of the derivative of a p-adic meromorphic function. Bull. Sci. Math. 2012, 136 (8), 839-847.
[2] Bezivin J.P., Boussaf K., Escassut A. Some new and old results on zeros of the derivative of a p-adic meromorphic function. Contemp. Math. Amer. Math. Soc. 2013, 596, 23-30.
[3] Boussaf K., Escassut A., Ojeda J. Primitives of p-adic meromorphic functions. Contemp. Math. 2011, 551, 51-56.
[4] Boussaf K., Boutabaa A., Escassut A. Growth of p-adic entire functions and applications. Houston J. Math. 2014, 40 (3), 715-736.
[5] Boussaf K., Boutabaa A., Escassut A. Order, type and cotype of growth for p-adic entire functions: a survey with additional properties. p-Adic Numbers Ultrametric Anal. Appl. 2016, 8 (4), 280-297.
[6] Boutabaa A. Theorie de Nevanlinna p-adique. Manuscripta Math. 1990, 67, 251-269.
[7] Chern T.Y.P. On the maximum modulus and the zeros of an transcendental entire function of finite logarithmic order. Bull. Hong Kong Math. Soc. 1999, 2, 271-278.
[8] Escassut A., Boussaf K., Boutabaa A. Order, type and cotype of growth for p-adic entire functions. Sarajevo J. Math. 2016, 12 (25) (2), suppl., 429-446.
[9] Escassut A. Analytic Elements in p-adic Analysis. World Scientic Publ. Pte. Ltd., Singapore, 1995.
[10] Escassut A. p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis. Math. Monogr., Beijing, 2008, 11, 42-138.
[11] Escassut A. Value Distribution in p-adic Analysis. World Scientic Publ. Pte. Ltd., Singapore, 2015.
[12] Escassut A., Ojeda J. Exceptional values of p-adic analytic functions and derivative. Complex Var. Elliptic Equ. 2011, 56 (1-4), 263-269.
[13] Escassut A., Ojeda J. Branched values and quasi-exceptional values for p-adic mermorphic functions. Houston J. Math. 2013, 39 (3), 781-795.
[14] Escassut A., Ojeda J. The p-adic Hayman conjecture when n=2. Complex Var. Elliptic Equ. 2014, 59 (10), 14521455.
[15] Hu P.C., Yang C.C. Meromorphic Functions over non-Archimedean Fields. Kluwer Academic Publ., 2000.
[16] Juneja O. P., Kapoor G. P., Bajpai S. K. On the (p, q)-order and lower (p, q)-order of an entire function. J. Reine Angew. Math. 1976, 282, 53-67.
[17] Juneja O.P., Kapoor G.P., Bajpai S.K. On the (p, q)-type and lower (p, q)-type of an entire function. J. Reine Angew. Math. 1977, 290, 180-190.
[18] Robert A. A Course in p-Adic Analysis, Graduate texts. Springer, 2000.
[19] Ojeda J. On Hayman's Conjecture over a p-adic field, Taiwanese J. Math. 2008, 12 (9), 2295-2313.

Бісвас Т. Оцінка орієнтованого росту складених р-адичних цілих функиій, цио залежить від (p, q) -го порядку // Карпатські матем. публ. - 2018. - Т.10, №2. - С. 248-272.

Нехай \mathbb{K} - повне ультраметричне алгебраїчно замкнуте поле, $\mathcal{A}(\mathbb{K})$ - \mathbb{K}-алгебра цілих функцій на \mathbb{K}. Для довільної p-адичної цілої функції $f \in \mathcal{A}(\mathbb{K})$ і $r>0$ позначимо $|f|(r)$ число $\sup \{|f(x)|:|x|=r\}$, де $|\cdot|(r)$ є мультиплікативною нормою на $\mathcal{A}(\mathbb{K})$. Для довільних двох цілих функцій $f \in \mathcal{A}(\mathbb{K})$ та $g \in \mathcal{A}(\mathbb{K})$ співвідношення $\frac{|f|(r)}{|g|(r)}$ при $r \rightarrow \infty$ називають порівняльним ростом f відносно g в сенсі їхніх мультиплікативних норм. Аналогічно до того, як це роблять в комплексному аналізі, в цій статті ми визначаємо поняття (p, q)-го порядку (відповідно (p, q)-го нижнього порядку) росту наступним чином $\rho^{(p, q)}(f)=\limsup _{r \rightarrow+\infty} \frac{\log ^{[p]}|f|(r)}{\log ^{(q]} r}$ (відпоідно $\lambda^{(p, q)}(f)=\liminf _{r \rightarrow+\infty} \frac{\log ^{[p]}|f|(r)}{\log ^{[q]} r}$, де p і q два довільні натуральні числа. Ми досліджуємо деякі властивості росту складених p-адичних цілих функцій на основі їхнього (p, q)-го порядку і (p, q)-го нижнього порядку.

Ключові слова і фрази: p-адична ціла функція, ріст, (p, q)-й порядок, (p, q)-й нижній порядок, композиція.

