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INVERSE PROBLEM FOR 2b-ORDER DIFFERENTIAL EQUATION WITH A
TIME-FRACTIONAL DERIVATIVE

We study the inverse problem for a differential equation of order 2b with the Riemann-Liouville
fractional derivative of order € (0,1) in time and given Schwartz type distributions in the right-
hand sides of the equation and the initial condition. The problem is to find the pair of functions
(1,8): a generalized solution u to the Cauchy problem for such equation and the time dependent
multiplier g in the right-hand side of the equation. As an additional condition, we use an analog of
the integral condition

(u(-t), 9o(-)) = F(t), t€]0,T],

where the symbol (u(-,t), ¢o(-)) stands for the value of an unknown distribution u on the given test
function ¢ for every t € [0, T}, F is a given continuous function.

We prove a theorem for the existence and uniqueness of a generalized solution of the Cauchy
problem, obtain its representation using the Green’s vector-function. The proof of the theorem is
based on the properties of conjugate Green’s operators of the Cauchy problem on spaces of the
Schwartz type test functions and on the structure of the Schwartz type distributions.

We establish sufficient conditions for a unique solvability of the inverse problem and find a rep-
resentation of an unknown function g by means of a solution of a certain Volterra integral equation
of the second kind with an integrable kernel.
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INTRODUCTION

Different initial and boundary value problems to differential and pseudo-differential equa-
tions with distributions in the right-hand sides are sufficiently investigated (see, for exam-
ple, [1-9] and references therein).

Equations with fractional derivatives [10] and inverse problems to them are appearing in
different branches of science and engineering, and the range of the applicability of the gener-
ated models is increase considerable. The conditions of classical solvability of the Cauchy and
boundary value problems to equations with a time fractional derivative were obtained, for ex-
ample, in [11-15]. The inverse boundary value problems to a time fractional diffusion equation
with different unknown functions or parameters were investigated, for example, in [16-24].
Most papers were devoted to inverse problems with an unknown right-hand sides, mainly
under regular data.
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In this paper for the equation
uP) — A(D)u = g(t)Fo(x), (x,1) € R" x (0,T] :=Q, (1)

with the Riemann-Liouville fractional derivative of order g € (0,1) we study the inverse prob-
lem
u(x,0) = F(x), xeR", (2)

(u(-,1), 9o(-)) = F(t), t€[0,T], 3)

of the determination the pair (u, g) where

AD)u= Y A,Du
|v[<2b

is a differential expression of order 2b with constants coefficients A, |y| < 2b such that

ou

i A(D)u

is the parabolic differential expression [7,12], F; (j = 0, 1) are given Schwartz type distributions,
F is a given continuous function, the symbol (u(-, t), ¢o(+)) stands for the value of an unknown
distribution u on the given test function ¢ for every t € [0, T.

Note that the conditions of the existence a regular solution for such fractional Cauchy
problem, even with the variable coefficients A, = A,(x), |y| < 2b, was obtained in [8] by
M.I. Matijchuk. The inverse boundary value problems of finding a pair (u,g) for a time-
fractional diffusion equations under regular given data in the right-hand sides and similar
(integral) over-determination conditions were studied, for example, in [16, 18]. The over-deter-
mination condition of kind (3), but with the scalar product (1, ¢g) in abstract Hilbert space,
was used in [17]. The inverse problem of kind (1)=(3) with (—A)Y/2 (y > B) instead of A(D)
and distributions with compact supports in the right-hand sides was studied in [22].

1 NOTATIONS, DEFINITIONS AND AUXILIARY RESULTS

We use the following: Q = R" x (0, T|, x = (x1,...,xn) € R", & = (a1,...,an), & = (xg, ),
aj€Zy,je{01,... n}, |a| = a1+ +ay x* = x5 1", D*(x,t) = Dio(x,t) =
%, D*y(x,t) = (%)“0 D*v(x,t), S(R") is the space of indefinitely differentiable func-
tions v in R” such that x”D"v are bounded in IR" for all multi-indexes «, 7y (the Schwartz space

of smooth rapidly decreasing functions), S, (R") (¢ > 0) is the space of type S(IR") (see [2, p.
201]):

1
S,(R") = {v € S(R") : |D*0(x)| < Coe ", x € R", Va}

with some positive constants C, = C,(v) and a = a(v),
1
S ()(R") = {0 € S(R") : |D*0(x)| < Cys(v)e "7 xeR", Va, V5>0}, a>0,

C20(Q) = {v € C*(@Q) : () 0l—r = 0, k € Z+}, S(Q) (5,(Q), S, (Q)) is the space of
functions v € C*(0(Q) such that (%)Sv(~,t) € S(R") (8y(R"), S, ) (R"), respectively) for
allt € [0,T], s € Z. By E’ we denote the space of linear continuous functionals over E (the
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space of distributions). The symbol ( f, ¢) stands for the value of the distribution f € E’ on the
test function ¢ € E,

he(Q) ={f€5,(Q): (f(x,), 9(x)) €C[0,T] Vg e Sy (R")},
S ,c(Q ={f €5, Q) : (fx.,)), ¢(x)) €CI0,T] Vo €S, y(R")}, a>0.
We denote by (g%¢)(x) = (g(¢), ¢(x +¢))) the convolution of the distribution g and the
test function ¢, by fxg the convolution of the distributions f and g: (f *xg,¢) = (f,g%¢)

for any test function ¢, by fg the direct product of the distributions f and ¢ (fg, @) =
(f(x), (g(t), (x,t)) for any test function ¢(x, t), use the function

A—1
) = S

where I'(A) is the Gamma-function, 6(t) is the Heaviside function. Note that f * f, = fai .,

¥ fu = fatp

The Riemann-Liouville derivative v(f) (t) of order > 0 is defined by the formula

olP)(t) = fp(t) x 0(b),

the Djrbashian-Caputo (regularized) fractional derivative of order B € (0, 1) is defined by

forA >0 and fy(t) = fi,,(t) for A <0,

1

Pl = =)

/t(t — 1) P/ (7)dr,
0

and therefore DPo(t) = v(P)(t) — f1-p(t)v(0).
We denote

(Lo)(x,t) = 0P (x,1) — (A0)(x,1),
(L"%80)(x,t) = va(x,t) — (Av)(x, 1),
(Lo)(x,t) = f-p(t)¥v(x,t) — (Av)(x,t), (x,t) € Q.
The Green formula

/v(x, 7)(Ly) (x, T)dxdT = /(L’egv) (x, T)P(x, T)dxdt + /v(x,O)fl,ﬁ(T)lp(x, T)dxdr,
Q Q Q

v, € S(Q), holds (see, for example, [5]).

Definition 1. The function u € Sé (a) C(Q) is called a solution of the Cauchy problem (1), (2)
if the identity

T T
[ wCn, @) 0)de = [®(Fo) 9l 0)dt+ (FWA- 0. 900) @
0 0

holds forall p € S, (;)(Q)-

Definition 2. The pair (u,g) € S:Y (@) C(Q) x C|0, T] is called a solution of the problem (1)—(3)
if the identity (4) and the condition (3) hold.
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It follows from (2) and (3) the compatibility condition

(F1, o) = F(0). ©)

Definition 3. The vector-function (Go(x,t), Gi(x,t)) is called a Green vector-function of the
Cauchy problem (2) to the equation (Lu)(x,t) = ®(x,t), (x,t) € Q, and also of such problem
to the equation

(L"8u)(x,t) = ®(x,t), (x,t)€Q, (6)

if under rather regular ®, F; the function

t
u(x,t) = /dr/Go(x —y,t = T)P(y, T)dy + / Gi(x—y HR(y)dy, (1) €Q  (7)
0 R" R"

is the regular solution of the problem (6), (2).
Such Green vector-function exists [8] and has the following bounds:

2b
2B

5
b 2% s
(Go(x, £)| < Ct= 5 +plemellxlt ) Py (|43,

2 (8)
B

n _B
Gilar )] <t Heme T Py (),

1, m < 0,
where ¥, (z) = ¥ (1) for |z| > 1and ¥yu(z) = < 1+ |In|z||, m =0, for |z| < 1.
|z| =™, m >0,

Hereinafter ¢, C, ¢, Ck, dy, dAk, Ci, Ci (k € Z,) are positive constants. Let

T
(Gop) (v, v) = [ dt [ g(x,1)Go(x vt = T)dx, (1,7) € Q,

T R”

T
Gi9)w) = [t [ 9x,1)Gi(x— v, )dx,y € R"
0

R

G t) = [ Glx—y,g(x) dx, (1) €Q, j=01.
R”

Lemmal. Ifa >0,7v>1-— %, ¢ € S, (2)(R") then there exist numbers C > 0, a’ € (0,a] such
that for all k € Z .., multi-indexx, |x| =k, 6 > 0 the following bounds hold:

A , 1 , 1
D(Gop) (v, £)] < extP e @I max sup [D*g(x)[e! 7, (1) € Q,
"X‘SkxelR”

—~ / 1 / 1 _
1Dy (Gio)(y, )| < cre” O max sup [DYp(x)[e® O (y,1) € Q.
|ae| <k xR

Proof. We use the bounds (8). In the case n > 2b for all multi-index a, [x| =k, ¢ € S, (;)(R")
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and ¢’ = §/a we have

| [ Golx —y,t = T)D*p()dx| < / Golx — y,t — 7)| [D*(x)|dx
! {xEIR”:|xfy\<(th)%}
+ Golix =yt = )| D" p(x)ldx
{xeR™:|x—y|>(t— T)Z }
< C(t—1) BB~ 1[ / D p(x)llx —yl*™"
= B(2b—n)
t—1) 2o
{XG]R”:‘Xfy|<(t7T)é%} ( )
b
+ / e—Cllx=yl(t=1) 2] |D”‘q0(x)|dx]
{xelR":|x—y\>(t—r)%}
n — 2b— , ,_E 4 , L
< Cy(t— 1) H A / %(cuf&)uxwut*r) 71F g-a(1-8)xl¥ g
g (t—T1)
{xeR™:|x—y|<(t—T)20 }
/ L szifﬁ , N , 1 ,
+ / o0 [lx=y|(t=1) 2] p—c(1=8")[|x=y|(t=1) ZbWe—a(l—é)IXI"dx] sup |D*¢(¢& )|e (1- 5)\6\"
B ¢eR"”
{xeR":|x—y|>(t—T1)20 }
b1 Y2 ) k| T BT —a(1—5x|¥
<Ci(t—1) Bh [ / e 1=0) x| T 2] pa(1=5) 17 g
g (t—1) 2
{xeR™:|x—y|<(t—T)20 }
_B 20 B 1 1
+ / o~ 00 [lx—y|(t=7)"B]20F ,—c(1-0")[|lx—y|T Zb]Ve*ﬂ(lfy)ledx} sup |[D*¢(& )|€ (1- 5)|§|7_
B ¢elR”
{xeR™:|x—y|>(t—T)20 }

1 _B
Putting ¢, = 2'7% fory € [1— %,1] ¢y =1fory >1,a = c,min{cT 27,a} and using the

inequality [12, p. 25] |A|% + |B|% > ¢y |A+ B|% we get

1 _ B 1 1 1
c(|x — y|T~5)7 +alx|7 > min{cT 27, a}[|x — y|7 + |x|7] > a'|y|7.

Then
1 (tfr)'zéb
‘/Go(x—y,t—r)mcp(x)dx‘ < Cz[ / #2617,
(t—1)
' 0
N s e PRt : (1-0")l2| 7
+(t—1) /r e d] sup |D ()\e
B ZeR?
t2b
s 1
< Ga(t—1)f 1 [1+ / (1=55)n—1,—cd'z dz}ea’(lﬁ’)y“Ygsulg D% (&) |1~ el
c n

1

1
Y= sup | DY ()] 5)\5\7, yeER", 0<T<t<T,

< C4(t — T)'Bilei
ZeRn
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ot oS [

! p o (E—1)

{xeR":|x—y|<t2b}

~§12%5 s\l

+ / el ) = =0T sup D ()61 5)lel?
B geR"
{xeR™:|x—y|>t20 }
1

< C5 1+/ zbe Czdz} a'(1=3") |y[7 sup |D*@(& )]e (1- 5)\@’\7

ge]Rﬂ

= Cge " (1*5)\1/\7 sup |D@(& ),e (1- 5)\5\7 (y,t) € Q
FER™

and similarly for n < 2b. Integrating by parts we finish the proof. O
Lemma?2. Ifa >0,7>1— %, a' = c, min{cT_%,a}, then

Go : S\ )R") =S, (o )( ™, @1 S @) (R") = S, () (R"), foreach t € [0, T},

Go: Sy ) (Q) = S (Q),G1 1 Sy () (Q) = S (4 (RY).

Proof. It follows from Lemma 1 the correctness of the mappings for G;, j = 0,1. Using the
property of the convolution and convolution’s differentiation we finish the proof. O

B -
Lemma 3. Fory > 1,0 <aT? <c,any ¢ € S%(a)(Q) the following relations hold:

(Go(Ly)) (v, 1) = p(y,7), (v,71)€Q,
(GILYNW) = (Ap(0), ¥y, 7)), yER"
Proof. Forally € S, (,,(Q), (v,5) € Q and multi-index « we have

©)

. , A T—s q -B
(F-649)w.5) = A_p(©)3(y5) = — | =g .0+ )

() D40 (0,5) = (D (fi g () D5) (1,9).

Therefore, f g% € S, (;)(Q) and Ly € S,.(2)(Q)- Then it follows from Lemmas 1 and 2

that @’ = a and (Go(Ly)) € S,,(4)(Q), (G1(LY)) € S () (R").

By [8], under rather regular (in particular, compactly supported) Fy, F;, g € C[0, T] the
unique regular solution (7) with ® = Fyg of the Cauchy problem (1), (2) exists. Substituting it
in the Green formula (instead of v) we get

/ / dr [ Go(x =yt = T)F()g(0)dy ) (L) (x, )l

R”

+ / | Gilx =y OF ()dy) (L) (x, )

R”

:/ (x, t)dxdt+/F1(x) (fip(t), (x,t))dx,
Q

R”
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T

/(/W/b“x‘%“‘ﬂ@wwiﬂﬂFWMﬁﬂwr

Q T R

+ [ ([ ey t)(Ly)x tydxat) B )y

R" Q

—/¢% yfwﬁ+/ﬁ5 ¥(y, 1)) Fi(y)dy,

and obtain the desirable formulas (9) after an arbitrariness of Fy, Fy, . O

Lemma 4. Forany ¢ € S, (,)(Q) there exists € S, ,)(Q) such that

L) (xt) = o(xt),  (xt)€Q.
Proof. As in [21], we show that

T

Y1) = [dt [ Golx—y,t=T)p(x)dx, (7)€ O
T ]Rn

is the unknown function. O

2 EXISTENCE AND UNIQUENESS THEOREM FOR THE CAUCHY PROBLEM

B
Theorem 1. Assume thaty > 1,0 < aT? < ¢, Fy,F € S; (a)(lR”), ¢ € C[0,T]. Then there
exists the unique solution u € S’ 7(a),C (Q) of the Cauchy problem (1), (2). It is defined by

(uC. / $(0) (Fo(), (Gog) (-t = ) )+ (Fi(), (Grg) (1))

Vo €S, ) (R"), t € [0,T].

(10)

Moreover, for any ¢ € S, (,)(R") there exist positive constants cT] = dAj(q)), j = 0,1 such that
|(u(-, 1), 9(-))| < dotP +dy, t€(0,T] (11)

Proof. Using Lemma 2 we get that forany ¢ € S, (,)(IR") the right-hand side of (10) exists and
belongs to C[0, T|. As in [22], we show that the function (10) satisfies the equality (4). For all
P e S%(a)(é) we have

I
/N
3
~~
N

—
=2
a

U
=

—
—~

)
—
_S
~—"
~—
P
s
F'-
,_]
=
H~
o\_}
=)
=
h
_S
=
~
N~——

0
T

= () [ 20 (Go(@y) w,0)dr) + (R), GEHW)).
0
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Using Lemma 3 we get the identity (4). By Definition 1 the function (10) is the solution of
the problem (1), (2).
To prove the performance of (11) for the function (10) we use [2, p. 211] that

1
Sy ayR") ={v e C®(R") : [[v][xa = sup "=V DYy (x)| < +o0 Vk €N, k > 2}
|a| <k,x€R"

and the sequence vy, (x) converges to zero (m — +00) in the space S, (,)(R") if the sequence
D*v,,(x) converges to zero uniformly on an arbitrary compact |x| < C < oo for each multi-
index « and the norms ||vy, || , are limited at random m, k € IN, k > 2. Note that

9] lka < |[0llkspa Ve, p €N, k>2, a>0, vE Sy, (a)(R").

We say (see [25, p. 151]) that the distribution F € S:Y (@) (R"™) has the order k € Z if there
exists C > 0 such that

[(F,@)| < Cllgllka Vo € S, (o) (R). (12)

A distribution from S:Y (a)(]R”) has a finite order. Indeed, the functional F satisfying (12) is
continuous on S, ,)(R"). Conversely, if F € S; (H)(]R”) and (12) is incorrect, then for each
k € N, k > 2 there exists ¢x € S, (,)(R") such that |(F, ¢x)| > k[|@k|k,q.- Then

(F,9)| > 1, where py(x) = -0 4 e e,
k|| @k |k.q

By definition, ||||x, < 1, and the sequence g — 0 (k — o0) in the space S, () (R"). We geta
contradiction with the previous inequality |(F, )| > 1 forallk € N, k > 2.
So, there exist k; € Z., and positive constants B; such that

[(F )| < Billgllk,a Vo €Sy @(RY), j=0,1T.

Using it and Lemma 1, forall ¢ € S, ,)(R") we get

|(Fo(w), (Gog) (.t — 1)) | < Boll(Gog) (-t — D)llke
< Bocky(t = TP [gllkye < 20(@)(t = TP lglliye 0< T << T,
t

/ 8O [(Fo(y), (Go@) (y,t — 7)) |dt < dot?||g| [k < dotf, and similarly,
0

[(FL(), (Gi9) (- 1)) | < Bill(GL9) (- Dllky,0 < dil|@lliy,a < 1, £ € [0, T

Therefore, we obtain (11) with dA] = di||@l|x.q, k = max{ko, k1 }, and see that the solution u of
the Cauchy problem has the order k for each t € [0, T'.
If uy, up are two solutions of the problem (1), (2) then for u = u; — u from (4) we obtain

(w,Lp) =0 Yy €S, (Q).

By using Lemma 4 we get (u(-,t), ¢(-)) = 0forall ¢ € S, ,)(R"), t € [0, T]. We obtainu =0
in S;,(a),c(é). O



AN INVERSE PROBLEM FOR 2b-ORDER DIFFERENTIAL EQUATION 115
3 SOLUTION OF THE INVERSE PROBLEM
We pass to the problem (1)—(3).

B
Theorem 2. Assume thaty > 1,0 < aT? < ¢, Fy,F; € S’%(u)(]R”), g,F,F(ﬁ) e C[o,T],
@0 € S, a)(R"), (Fo, p0) # 0 and (5) holds. Then there exists the unique solution (u,g) €
S; (@ -(Q) x C[0, T] of the problem (1)~(3): u is defined by (10) with

g(t) = [FP(t) —r(t)] [(Fo, 90)] 1, t€[0,T], (13)

where r(t) is the solution of the integral equation

/Ktr T)dt +o(t), teo,T), (14)
~ (Fo(+), (GoAgo) (-t —T))
K(t,T) = (Fo, 90) / (15)
:/ (t, 7)E® (1)dT + (F1(-), (G1Ap) (- 1)), t € [0,T]. (16)
0

Proof. Letu € S; (a) C(Q) be the solution of the problem (1), (2). The equation (1) implies

(), 90(-)) = (u(-,1), Ago(-)) + (Fo, 0)8(#).

By the over-determination condition (3) we get

FP(t) = (u(-,t), Apo(-)) + (Fo, o)g(t).

Using the assumption we find

8(t) = [FP(t) = (uC, 1), Ago())[(Fo, o)), £ € [0,T) (17)
By Theorem 1 the right-hand side of (17) is the continuous function on [0, T|. By substitut-
ing it in (10) instead of g(t) and putting ¢ = ¢( one obtains
t

(u(-,1), Ago(") / 20, Ap()] (R, (CoAgo) (-, t — 1)) dT
0

FO/ 900

+(F1(), (G1A@o) (-, t)), te[0,T].
We denote
r(t) = (u(~ ), Ago ()
Then the previous equation takes the form of equation (14). As in the proof of Theorem 1
we get
[(Fo(-), (GoAgo) (-, £,7))| < Boll(GoAo) (-t =TIk,
< CollAgo (-t = T)llky < Co(t =0 MI@o (-, t = D)llk+25,
[(F1(), (G1A0) (-, 1)) | < Bull(G1Ago) (-, 1)1k, < Cullgo(:, £)lley +20-
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So, the kernel (15) is integrable, the function (16) is continuous on [0, T], and the second
type Volterra integral equation (14) has the unique solution r € C[0, T].
Let 7, ¢ be defined by (14), (13), respectively. Then by Theorem 1 the function (10) is the
solution of the Cauchy problem (1)—(2) with the known g(#). Using the property
tim [ p(x)G1(x —y,)dx = p(0) Vg € S(R")
Rﬂ
and the condition (5) we get

(u(-,0),@0(-)) = (Fi(), (Gi90)(-,0)) = (Fy, go) = F(0).

Show that the function (10) with ¢(#) defined by (13) satisfies the condition (3). If F*(¢) =
(u(-,1), @o(-)) then F*(0) = F(0), and from the over-determination condition (3) we get

g(t) = [F*P(t) = (u(-, 1), Apo(-)) ] [(Fo, o)) ™, £ € [0, T]. (18)
As in the previous reasoning we obtain that the function (u(-, ), A@o(-)) satisfies the equa-
tion (14), and by uniqueness of a solution of this equation we obtain (u(-,t), Ago(-)) = r(t)
for all t € [0,T]. Then it follows from (18) and (13) that F*(#)(¢) = F(A)(t), and therefore,
F*(t) = F(t),t € [0, T]. So, the pair (u, g) defined by (10) and (13), with r defined by (14), is the
solution of the problem (1)-(3).
If (11, 81), (12, §2) are two solutions of the problem (1)—(3), then foru = u; —uy, g = g1 —
we obtain the problem

(u(,1),0()) = = [ HD)(Fa), (Gop)(t = T))dT Vo € S(RY),
0

()
st) = (Fo, o)’ 0T,

where 7(t) is a solution of the second type homogeneous Volterra integral equation
t
P(t) = — / K(t,T)r(t)dr, telo,T.
0

By uniqueness of a solution of this equation we obtain r(¢t) = 0 for all t € [0, T]. Then, from
the previous equalities, ¢(t) = 0forallt € [0, T] and u = 0 in S; (a) -(Q). O

4 CONCLUSIONS

We proved the solvability of an inverse problem of the determination a time-dependent
continuous part of a source for a time fractional 2b-order equation with constant coefficients
and Schwartz type distributions in the right-hand sides using the over-determination condi-
tion (3). In a such way, by using the results of [8] the obtained results extend to some case of
the operator A(x, D) with infinitely differentiable coefficients.
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BuBuaemo obepHeHY 3apady AAS AMdpepeHITiaAbHOTO PiBHSHHS TOPSIAKY 2b 3 ApoboBoro moxi-
AHOIO TIOpsIAKY B € (0,1) 3a uacoM i 3apraHVMY y3araabHeHMMM pyHKIissMy Trmy [IIBapia y mpa-
BMIX YaCTMHAX PiBHSIHHSI i IOUaTKOBOI YMOBIL. 3aAada IOASITAE y 3HAXOAKEHH] apy pyHKiif (1, §):
y3araabHEHOI'O po3B’sI3Ky ¢ 3apadi Kol AAsl Takoro piBHSIHHS i 3aA€XXHOTO Bia Jacy HellepepBHOTO
MHOXHMKA ¢ y IPaBili YaCTVHI piBHIHHS. SIK AOAATKOBY YMOBY BUKOPMCTOBY€E€MO aHAAOT iHTeTrpaAb-
HOI YMOBM

(u(-,t), 9o(-)) = E(t), t€]0,T],

ae (u(-,t), po(+)) — 3HaUEHHS IIYKAHOIO y3araAbHEHOTO PO3B’si3Ky u 3apadi Kot Ha ikcosanii
OCHOBHI pyHKIIT ¢g(x), ¥ € R"” AAST KOXHOTO 3HaUeHHs f, F — 3aAaHa HellepepBHA (PYHKIIsL.

AOBOAMMO TeOpeMy iCHyBaHHSI i EAMHOCTi y3araAbHEHOro po3B’sI3Ky 3aaaui Komri, oaepxyemo
JI0r0 306pa’keHHsI 3a AOIIOMOTOIO BeKTOp-yHKuii [ piHa. AOBEACHHSI TeOpeMy TPYHTYEThCS Ha BAA-
CTMBOCTSIX CIpspKeHnx oneparopis I pina 3aaaui Korui Ha mpocropax turmy IlIBapua ocHOBHMX (pyH-
Kl i CTPYKTYpi y3araabHeHMX pyHKUin tumy IBapiia.

BcTaHOBAIOEMO AOCTaTHI YMOBM OAHO3HAYHOI PO3B’SI3HOCTI OOGepHEHOI 3aAadi i 3HAXOAMMO 30-
bpakeHHST HeBiAOMOI (PYHKIIIT ¢ Uepe3 po3B’sI30K MEBHOTO iHTerpaAbHOrO PiBHSHHS BoabTeppnu
APYTOTO POAY 3 iHTETPOBHUM SIAPOM.

Koouosi cnoea i ppasu: ysararbHeHa (pyHKIIisI, IOXiAHA APOHOBOTO MOPSIAKY, ObepHEHa 3aAava,
BekTOp-dyHKis I piHa.



