Prokip V.M.

ON THE SIMILARITY OF MATRICES $A B$ AND $B A$ OVER A FIELD

Abstract

Let A and B be n-by- n matrices over a field. The study of the relationship between the products of matrices $A B$ and $B A$ has a long history. It is well-known that $A B$ and $B A$ have equal characteristic polynomials (and, therefore, eigenvalues, traces, etc.). One beautiful result was obtained by H. Flanders in 1951. He determined the relationship between the elementary divisors of $A B$ and $B A$, which can be treated as a criterion when two matrices C and D can be realized as $C=A B$ and $D=B A$. If one of the matrices (A or B) is invertible, then the matrices $A B$ and $B A$ are similar. If both A and B are singular then matrices $A B$ and $B A$ are not always similar. We give conditions under which matrices $A B$ and $B A$ are similar. The rank of matrices plays an important role in these investigations.

Key words and phrases: matrix, similarity, rank.
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine
E-mail: v.prokip@gmail.com

1 Introduction

Let F be a field and let $M_{m, n}(\mathrm{~F})$ denote the set of m-by- n matrices with entries from F. In what follows, $G L(n, \mathrm{~F})$ the group of nonsingular matrices in $M_{n, n}(\mathrm{~F}), I_{k}$ is the identity $k \times k$ matrix, and $0_{m, n}$ is the zero $m \times n$ matrix.

Let $A, B \in M_{n, n}(\mathrm{~F})$. It is well known that the characteristic polynomials of $A B$ and $B A$ are the same (see, for example, $[6,9,10,14])$. If one of the matrices $(A$ or $B)$ is invertible, then the matrices $A B$ and $B A$ are similar. If both A and B are singular then matrices $A B$ and $B A$ are not always similar (see [6, Sec. 1.3]). It is clear that matrices $A B$ and $B A$ are similar if and only if the matrix polynomials $I_{n} \lambda-A B$ and $I_{n} \lambda-B A$ are equivalent. It is evident, if matrices A and B commute then $A B$ and $B A$ are similar.

Let $A \in M_{n, m}(\mathrm{~F})$ and $B \in M_{m, n}(\mathrm{~F})$. In paper [3], H . Flanders solved the problem of determining the relationship between the elementary divisors of $A B$ and those of $B A$. Another proof of Flanders' theorem, with some generalizations, has been given in [11] (see also [1]). Robert C. Thompson [13] proposed a new proof of Flanders' theorem. It is obvious that some connection exists between the ranks of A and B and the intertwining of the elementary divisors of $A B$ and $B A$. A constructive proof of Flanders' theorem was also given in [7]. Using the Weyr characteristic the relationship between the Jordan forms of the matrix products $A B$ and $B A$ for matrices A and B was given in [8]. Robert E. Hartwig [5] generalizes Flanders' result for matrices over a regular strongly-pi-regular ring. It will be observed that an extension of these results to rings would be valuable and interesting. The rank conditions under which matrices $A B$ and $B A$ are similar were proposed in $[2,3,13]$.

Suppose that A and B are complex $n \times n$ matrices. The matrix $A B$ is similar to $B A$ if and only if $\operatorname{rank}(A B)^{j}=\operatorname{rank}(B A)^{j}$ for each $j=1,2, \ldots, n$ (see [6, Sec. 3]). If A is positive semidefinite matrix and B is normal matrix, in [4] it has been proved that $A B$ and $B A$ are

[^0]similar. The smallest nonnegative integer k such that $\operatorname{rank} A^{k+1}=\operatorname{rank} A^{k}$, is the index for A and denoted by $\operatorname{Ind}(A)$. In [8] was proved that matrices $A B$ and $B A$ are similar if and only if $\operatorname{Ind}(A B)=\operatorname{Ind}(B A)=k$ and $\operatorname{rank}(A B)^{i}=\operatorname{rank}(B A)^{i}$ for all $i=1,2, \ldots, k-1$.

In this note we investigate the following widely known question: Let $A, B \in M_{n, n}(\mathrm{~F})$. When are matrices $A B$ and $B A$ similar? We give conditions in terms of rank matrices, under which matrices $A B$ and $B A$ are similar. If matrices $A B$ and $B A$ are similar we give their canonical form with respect to similarity.

2 MAIN RESULTS

Let $A, B \in M_{n, n}(\mathrm{~F})$ be singular matrices and let rank $A=r$. We introduce the following notation for the matrices A and B. For A there exist matrices $U, V \in G L(n, \mathrm{~F})$ such that

$$
U A V=\left[\begin{array}{cc}
I_{r} & 0_{r, n-r} \\
0_{n-r, r} & 0_{n-r, n-r}
\end{array}\right] .
$$

Put $V^{-1} B U^{-1}=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$, where $B_{11} \in M_{r, r}(F)$. It is easy to make sure that

$$
U A B U^{-1}=C=\left[\begin{array}{cc}
B_{11} & B_{12} \tag{1}\\
0_{n-r, r} & 0_{n-r, n-r}
\end{array}\right]
$$

and

$$
V^{-1} B A V=D=\left[\begin{array}{cc}
B_{11} & 0_{r, n-r} \tag{2}\\
B_{21} & 0_{n-r, n-r}
\end{array}\right] .
$$

We will use these notations to give the characterization of similarity of matrices $A B$ and $B A$. Thus, $A B$ and $B A$ are similar if and only if the polynomial matrices $I_{n} \lambda-C$ and $I_{n} \lambda-D$ are equivalent, i.e. the Smith normal forms of these polynomial matrices are coincide.

In view of the above, we give the following description of similarity of the matrices $A B$ and $B A$.

Theorem 1. Let $A, B \in M_{n, n}(\mathrm{~F})$ be singular matrices. If
(a) $\operatorname{rank} B_{11}=\operatorname{rank}\left[\begin{array}{l}B_{11} \\ B_{21}\end{array}\right]=\operatorname{rank}\left[\begin{array}{ll}B_{11} & B_{12}\end{array}\right]$, or
(b) $B_{11}=0_{r, r}$ and $\quad \operatorname{rank} B_{21}=\operatorname{rank} B_{12}$, or
(c) the matrix $\left[\begin{array}{cc}B_{11} & B_{12} \\ B_{21} & 0_{n-r, n-r}\end{array}\right]$ is symmetric,
then matrices $A B$ and $B A$ are similar.
Proof. (a) Since $\operatorname{rank} B_{11}=\operatorname{rank}\left[\begin{array}{l}B_{11} \\ B_{21}\end{array}\right]=\operatorname{rank}\left[\begin{array}{ll}B_{11} & B_{12}\end{array}\right]$, then the equations $X B_{11}=B_{21}$ and $B_{11} Y=B_{12}$ are solvable. Let matrices $X_{1} \in M_{n-r, r}(\mathrm{~F})$ and $Y_{1} \in M_{r, n-r}(\mathrm{~F})$ be the solutions to these equations respectively.

$$
\begin{aligned}
& \text { For matrix } T_{1}=\left[\begin{array}{cc}
I_{r} & 0_{r, n-r} \\
-X_{1} & I_{n-r}
\end{array}\right] \text { we have } \\
& \qquad T_{1}\left[\begin{array}{cc}
B_{11} & 0_{r, n-r} \\
B_{21} & 0_{n-r, n-r}
\end{array}\right] T_{1}^{-1}=\left[\begin{array}{cc}
B_{11} & 0_{r, n-r} \\
0_{n-r, r} & 0_{n-r, n-r}
\end{array}\right] .
\end{aligned}
$$

Similarly, for matrix $T_{2}=\left[\begin{array}{cc}I_{r} & -Y_{1} \\ 0_{n-r, r} & I_{n-r}\end{array}\right]$ we have

$$
T_{2}^{-1}\left[\begin{array}{cc}
B_{11} & B_{12} \\
0_{n-r, r} & 0_{n-r, n-r}
\end{array}\right] T_{2}=\left[\begin{array}{cc}
B_{11} & 0_{r, n-r} \\
0_{n-r, r} & 0_{n-r, n-r}
\end{array}\right] .
$$

Hence, matrices $\left[\begin{array}{cc}B_{11} & B_{12} \\ 0_{n-r, r} & 0_{n-r, n-r}\end{array}\right]$ and $\left[\begin{array}{cc}B_{11} & 0_{r, n-r} \\ B_{21} & 0_{n-r, n-r}\end{array}\right]$ are similar. Thus, $A B$ and $B A$ are similar.
(b) Let $B_{11}=0_{r, r}$ and $\operatorname{rank} B_{21}=\operatorname{rank} B_{12}=s$. For B_{12} there exist matrices $U_{1} \in G L(r, \mathrm{~F})$ and $V_{1} \in G L(n-r, F)$ such that

$$
U_{1} B_{12} V_{1}=\left[\begin{array}{cc}
0_{s, n-r-s} & I_{s} \\
0_{r-s, n-r-s} & 0_{r-s, s}
\end{array}\right] .
$$

Thus, for the matrix $T_{1}=\operatorname{diag}\left(U_{1}, V_{1}^{-1}\right)$ we have

$$
T_{1}\left[\begin{array}{cc}
0_{r, r} & B_{12} \\
0_{n-r, r} & 0_{n-r, n-r}
\end{array}\right] T_{1}^{-1}=\left[\begin{array}{cc}
0_{s, n-s} & I_{s} \\
0_{n-s, n-s} & 0_{n-s, s}
\end{array}\right] .
$$

Similarly, for matrix B_{21} there exist $U_{2} \in G L(n-r, \mathrm{~F})$ and $V_{2} \in G L(r, \mathrm{~F})$ such that

$$
U_{2} B_{12} V_{2}=\left[\begin{array}{cc}
0_{n-r-s, s} & 0_{n-r-s, r-s} \\
I_{s} & 0_{s, r-s}
\end{array}\right]
$$

and for the matrix $T_{2}=\operatorname{diag}\left(V_{2}^{-1}, U_{2}\right)$ we have

$$
T_{2}\left[\begin{array}{cc}
0_{r, r} & B_{12} \\
0_{n-r, r} & 0_{n-r, n-r}
\end{array}\right] T_{2}^{-1}=\left[\begin{array}{cc}
0_{n-s, s} & 0_{n-s, n-s} \\
I_{s} & 0_{s, n-s}
\end{array}\right] .
$$

It is obvious that matrices $\left[\begin{array}{cc}0_{r, r} & B_{12} \\ 0_{n-r, r} & 0_{n-r, n-r}\end{array}\right]$ and $\left[\begin{array}{cc}0_{r, r} & 0_{r, n-r} \\ B_{21} & 0_{n-r, n-r}\end{array}\right]$ are similar. Thus, $A B$ and $B A$ are similar.
(c) Matrix $\left[\begin{array}{cc}B_{11} & B_{12} \\ 0_{n-r, r} & 0_{n-r, n-r}\end{array}\right]$ and its transpose $\left[\begin{array}{cc}B_{11} & B_{12} \\ 0_{n-r, r} & 0_{n-r, n-r}\end{array}\right]^{T}$ are similar. Hence, we have

$$
\left[\begin{array}{cc}
B_{11} & B_{12} \\
0_{n-r, r} & 0_{n-r, n-r}
\end{array}\right]^{T}=\left[\begin{array}{cc}
B_{11}^{T} & 0_{r, n-r} \\
B_{12}^{T} & 0_{n-r, n-r}
\end{array}\right]=\left[\begin{array}{cc}
B_{11} & 0_{r, n-r} \\
B_{21} & 0_{n-r, n-r}
\end{array}\right] .
$$

Thus, matrices $A B$ and $B A$ are similar. The proof of Theorem 1 is complete.
From Theorem 1 we have the following statement.
Corollary 1. Let $A, B \in M_{n, n}(\mathrm{~F})$ be singular matrices. If $\operatorname{det} B_{11} \neq 0$ then matrices $A B$ and $B A$ are similar.

Consider the following example.

Example. Let $\mathrm{F}=\mathrm{Q}$ be the field of rational numbers and let

$$
A=\left[\begin{array}{rrrr}
7 & -3 & -11 & 9 \\
5 & -2 & -10 & 8 \\
-12 & 5 & 21 & -17 \\
12 & -5 & -16 & 13
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{llll}
-23 & -18 & -2 & 16 \\
-55 & -43 & -5 & 38 \\
-65 & -52 & -4 & 48 \\
-80 & -64 & -5 & 59
\end{array}\right]
$$

be matrices over Q . For nonsingular matrices

$$
U=\left[\begin{array}{rrrr}
0 & 1 & 1 & 1 \\
-1 & 0 & 1 & 1 \\
-1 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{rrrr}
3 & 2 & 1 & 2 \\
7 & 5 & 2 & 5 \\
0 & 0 & 9 & 4 \\
0 & 0 & 11 & 5
\end{array}\right]
$$

over Q we have

$$
U A V=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
I_{3} & 0_{3,1} \\
0_{3,1} & 0
\end{array}\right]
$$

and

$$
V^{-1} B U^{-1}=\left[\begin{array}{lll|l}
0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 \\
0 & 1 & 3 & 1 \\
\hline 0 & 1 & 2 & 2
\end{array}\right]=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right], \text { where } B_{11}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 2 \\
0 & 1 & 3
\end{array}\right] .
$$

Thus, $\operatorname{rank} B_{11}=\operatorname{rank}\left[\begin{array}{l}B_{11} \\ B_{21}\end{array}\right]=\operatorname{rank}\left[\begin{array}{ll}B_{11} & B_{12}\end{array}\right]=2$. By statement (a) of Theorem 1 matrices $A B$ and $B A$ are similar to the matrix B_{11}.
Lemma 1. Let $A, B \in M_{n, n}(\mathrm{~F})$ be singular matrices. If $\operatorname{rank} A B=\operatorname{rank} B A=1$, then $A B$ and $B A$ are similar.

To prove the Lemma we need the following proposition (see also Chapter 2 in [6] and Theorem 1 in [12]).

Proposition 1. Let $C \in M_{n, n}(\mathrm{~F})$ be a matrix of rank one and $\operatorname{tr} C=c$. The matrix C is similar to one of the matrices

$$
D_{1}=\operatorname{diag}(c, 0, \ldots, 0) \text { if } c \neq 0
$$

or

$$
D_{2}=\operatorname{diag}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], 0, \ldots, 0\right) \text { if } c=0
$$

Proof. The proof of the Proposition is algorithmic. The matrix C we write in the form $C=\bar{p} \cdot \bar{q}$, where $\bar{p} \in M_{n, 1}(\mathrm{~F})$ and $\bar{q} \in M_{1, n}(\mathrm{~F})$. For the vector \bar{p} there exists a matrix $P \in G L(n, \mathrm{~F})$ such that $P \cdot \bar{p}=\left[\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right]^{T}$. Then C is similar to a matrix of the form

$$
P C P^{-1}=P \bar{p} \cdot \bar{q} P^{-1}=C_{1}=\left[\begin{array}{c|ccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} \tag{3}\\
\hline 0_{n-1,1} & & 0_{n-1, n-1}
\end{array}\right] .
$$

It is clear that $\alpha_{11}=c$ is a trace of the matrix C.
Suppose, $c \neq 0$. For the matrix $T_{1}=\left[\begin{array}{c|c}1 & 0_{1, n-1} \\ \hline-\frac{\alpha_{12}}{c} & \\ \vdots & I_{n-1} \\ -\frac{\alpha_{1 n}}{c} & \end{array}\right] \in G L(n, \mathrm{~F})$ we have

$$
T_{1}^{-1} C_{1} T_{1}=\operatorname{diag}(c, 0, \ldots, 0)=D_{1} .
$$

Thus, if $\operatorname{tr} C=c \neq 0$, then matrices C and D_{1} are similar.
Let $\operatorname{tr} C=0$. From equality (3) it follows

$$
C_{1}=\left[\begin{array}{c|ccc}
0 & \alpha_{12} & \ldots & \alpha_{1 n} \\
\hline 0_{n-1,1} & & 0_{n-1, n-1}
\end{array}\right] .
$$

For elements $\left\{\alpha_{12}, \alpha_{13}, \ldots, \alpha_{1 n}\right\}$ there exists a matrix $T_{0} \in G L(n-1, F)$ such that $\left[\begin{array}{llll}\alpha_{12} & \alpha_{13}, \ldots, & \alpha_{n}\end{array}\right] T_{0}=\left[\begin{array}{cccc}1 & 0 & \ldots & 0\end{array}\right]$. Thus, for the matrix

$$
T_{2}=\left[\begin{array}{c|c}
1 & 0_{1, n-1} \\
\hline 0_{n-1,1} & T_{0}
\end{array}\right] \in G L(n, \mathrm{~F})
$$

we have

$$
T_{2}^{-1} C_{1} T_{2}=\operatorname{diag}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], 0, \ldots, 0\right)=D_{2}
$$

Since $\operatorname{tr} C=0$, matrices C and D_{2} are similar. This completes the proof of the Proposition.

Proof. Let $A, B \in M_{n, n}(\mathrm{~F})$ be singular matrices and

$$
\operatorname{rank} A B=\operatorname{rank} B A=1
$$

Suppose $\operatorname{rank} B \geq \operatorname{rank} A=r$. Matrix $A B$ is similar to the matrix

$$
C=\left[\begin{array}{cc}
B_{11} & B_{12} \\
0_{n-r, r} & 0_{n-r, n-r}
\end{array}\right],
$$

where $B_{11} \in M_{r, r}(\mathrm{~F})$ (see equalities (1) and (2)). Similarly $B A$ is similar to the matrix

$$
D=\left[\begin{array}{cc}
B_{11} & 0_{r, n-r} \\
B_{21} & 0_{n-r, n-r}
\end{array}\right] .
$$

Thus, $\operatorname{tr} A B=\operatorname{tr} B A=\operatorname{tr} B_{11}$. Put $\operatorname{tr} B_{11}=c$.
Suppose $c \neq 0$. By Proposition 1 matrices $A B$ and $B A$ are similar to the matrix $D_{1}=\operatorname{diag}(c, 0, \ldots, 0)$.

If $c=0$ then by Proposition matrices $A B$ and $B A$ are similar to the matrix $D_{2}=\operatorname{diag}\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], 0, \ldots, 0\right)$, which completes the proof of the Lemma.
Corollary 2. Let $A, B \in M_{n, n}(\mathrm{~F})$ be singular matrices and $\operatorname{rank} A=1$. If $A B \neq 0_{n, n}$ and $B A \neq 0_{n, n}$ then $A B$ and $B A$ are similar.

Corollary 3. Let $A, B \in M_{2,2}(\mathrm{~F})$. If $A B \neq 0_{2,2}$ and $B A \neq 0_{2,2}$ then $A B$ and $B A$ are similar.
Theorem 2. Let $A, B \in M_{n, n}(\mathrm{~F})$ and let $\operatorname{rank} A=2$. If $\operatorname{rank} A B=\operatorname{rank} B A$ then $A B$ and $B A$ are similar.

Proof. If rank $A B=\operatorname{rank} B A=1$ then by Lemma 1 matrices $A B$ and $B A$ are similar. Suppose $\operatorname{rank} A B=\operatorname{rank} B A=2$. Matrix $A B$ is similar to the matrix $C=\left[\begin{array}{cc}B_{11} & B_{12} \\ 0_{n-2,2} & 0_{n-2, n-2}\end{array}\right]$, where $B_{11} \in M_{2,2}(F)$ (see equalities (1) and (2)). Similarly, $B A$ is similar to the matrix $D=\left[\begin{array}{cc}B_{11} & 0_{2, n-2} \\ B_{21} & 0_{n-2, n-2}\end{array}\right]$. Thus, $\operatorname{rank}\left[\begin{array}{c}B_{11} \\ B_{21}\end{array}\right]=\operatorname{rank}\left[\begin{array}{ll}B_{11} & B_{12}\end{array}\right]=2$.

If $B_{11}=0_{2,2}$ or det $B_{11} \neq 0$ then by Theorem 1 b or Corollary 1 respectively matrices $A B$ and $B A$ are similar. Let rank $B_{11}=1$ and let $\operatorname{tr} B_{11} \neq 0$. For B_{11} there exists a matrix $U_{11} \in G L(2, F)$ such that

$$
U_{11} B_{11} U_{11}^{-1}=\left[\begin{array}{ll}
\alpha & 0 \\
0 & 0
\end{array}\right],
$$

where $\alpha=\operatorname{tr} B_{11}$. For the matrix $T_{11}=\left[\begin{array}{cc}U_{11} & 0_{2, n-2} \\ 0_{n-2,2} & I_{n-2}\end{array}\right]$ we have

$$
T_{11} C T_{11}^{-1}=C_{11}=\left[\begin{array}{cc|c}
\alpha & 0 & \widetilde{B}_{12} \\
0 & 0 & \\
\hline 0_{n-2,1} & 0_{n-2, n-1}
\end{array}\right],
$$

where $\widetilde{B}_{12}=B_{12} U_{1}^{-1}$. It is evident that rank $C_{11}=2$. It is easy to make sure that if $n=3$ then $\widetilde{B}_{12}=\left[\begin{array}{ll}c_{13} & c_{23}\end{array}\right]^{T}$ and $c_{23} \neq 0$. For \widetilde{B}_{12} the exists a matrix $U_{12} \in G L(n-2, F)$ such that

$$
\widetilde{B}_{12} U_{12}=\left[\begin{array}{ccccc}
\alpha_{1} & 0 & \ldots & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0
\end{array}\right] .
$$

Thus, for the matrix $T_{12}=\left[\begin{array}{cc}I_{2} & 0_{2, n-2} \\ 0_{n-2,2} & U_{12}\end{array}\right]$ we have

$$
T_{12}^{-1} C_{11} T_{12}=C_{12}=\left[\begin{array}{cccc|c}
\alpha & 0 & \alpha_{1} & 0 & 0_{2, n-4} \\
0 & 0 & 0 & 1 & \\
\hline & 0_{n-2,4} & & 0_{n-2, n-4}
\end{array}\right] .
$$

It is obvious that matrix C_{12} is similar to the matrix $C_{13}=\left[\begin{array}{ccc|c}\alpha & 0 & 0 & 0_{2, n-3} \\ 0 & 0 & 1 & 0_{n-2, n-3}\end{array}\right]$.
It may be noted that matrices D and D^{T} are similar. Reasoning similarly we convince ourselves that the matrix $\left[\begin{array}{cc}B_{11}^{T} & B_{21}^{T} \\ 0_{n-r, r} & 0_{n-r, n-r}\end{array}\right]$ is similar to the matrix C_{13}. Thus, in the case when $\operatorname{tr} B_{11} \neq 0$, matrices C and D are similar.

Let us now consider the case when rank $B_{11}=1$ and $\operatorname{tr} B_{11}=0$. For B_{11} there exists a matrix $V_{11} \in G L(2, F)$ such that

$$
V_{11} B_{11} V_{11}^{-1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

For the matrix $S_{11}=\left[\begin{array}{cc}V_{11} & 0_{2, n-2} \\ 0_{n-2,2} & I_{n-2}\end{array}\right]$ we have

$$
S_{11} C S_{11}^{-1}=C_{21}=\left[\begin{array}{cc|c}
0 & 1 & \widehat{B}_{12} \\
0 & 0 & \\
\hline 0_{n-2,1} & 0_{n-2, n-1}
\end{array}\right], \quad \text { where } \quad \widehat{B}_{12}=B_{12} V_{11}^{-1} .
$$

Obviously that rank $C_{21}=2$. We note, if $n=3$ then $\widehat{B}_{12}=\left[\begin{array}{ll}c_{13} & c_{23}\end{array}\right]^{T}$ and $c_{23} \neq 0$.

For \widehat{B}_{12} the exists a matrix $V_{12} \in G L(n-2, \mathrm{~F})$ such that

$$
\widehat{B}_{12} V_{12}=\left[\begin{array}{ccccc}
\beta_{1} & 0 & \ldots & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0
\end{array}\right] .
$$

Thus, for the matrix $S_{12}=\left[\begin{array}{cc}I_{2} & 0_{2, n-2} \\ 0_{n-2,2} & V_{12}\end{array}\right]$ we have

$$
S_{12}^{-1} C_{21} S_{12}=C_{22}=\left[\begin{array}{cccc|c}
0 & 1 & \beta_{1} & 0 & 0_{2, n-4} \\
0 & 0 & 0 & 1 & \\
\hline & 0_{n-2,4} & & 0_{n-2, n-4}
\end{array}\right] .
$$

It is evident that matrix C_{22} is similar to the matrix $C_{23}=\left[\begin{array}{ccc|c}0 & 1 & 0 & 0_{2, n-3} \\ 0 & 0 & 1 & 0^{2} \\ \hline 0_{n-2,4} & 0_{n-2, n-3}\end{array}\right]$.
Reasoning similarly, we can prove that matrix $\left[\begin{array}{cc}B_{11}^{T} & B_{21}^{T} \\ 0_{n-r, r} & 0_{n-r, n-r}\end{array}\right]$ is similar to the matrix C_{23}. Thus in the case when $\operatorname{tr} B_{11}=0$ matrices C and D are similar.

So, we have that matrices $A B$ and $B A$ are similar and the proof of Theorem 2 is complete.

From Theorem 2 we have the following statement.
Corollary 4. Let $A, B \in M_{3,3}(F)$. If $\operatorname{rank} A B=\operatorname{rank} B A$ then matrices $A B$ and $B A$ are similar.

AcKNOWLEDGEMENTS

The author wishes to thank the referee for a careful reading of the manuscript and for his comments and suggestions.

References

[1] Bernau S. J., Abian A. Jordan canonical forms of matrices AB and BA. Rend. Istit. Mat. Univ. Trieste. 1989, 20 (1), 101-108.
[2] Cao C. G., Tang X. M., Yang L. The Rank Conditions such that AB and BA are Similar and Applications. Inter. J. Algebra 2007, 1 (6), 283-292.
[3] Flanders H. Elementary divisors of $A B$ and BA. Proc. Amer. Math. Soc. 1951, 2 (6), 871-874.
[4] Garcia S. R., Sherman D., Weiss G. On the similarity of $A B$ and $B A$ for normal and other matrices. Linear Algebra Appl. 2016, 508 (1), 14-21.
[5] Hartwig R. E. On a theorem of Flanders. Proc. Amer. Math. Soc. 1982, 85 (3), 310-312.
[6] Horn R. A., Johnson C. R. Matrix Analysis, Cambridge University Press, New York, 1985.
[7] Johnson Ch.R., Schreiner E.A. The Relationship Between AB and BA. Amer. Math. Monthly. 1996, 103 (7), 578-582.
[8] Lippert R. A., Strang G. The Jordan forms of AB and BA. Electron. J. Linear Algebra. 2009, 18, 281-288.
[9] MacDuffee C.C. The theory of matrices, Chelsea, New York, 1946.
[10] Parker W. V. The matrices AB and BA. Amer. Math. Monthly. 1953, 60 (5), 316-316.
[11] Parker W. V., Mitchell B.E. Elementary divisors of certain matrices. Duke Math. J. 1952, 19 (3), 483-485.
[12] Prokip V.M. The structure of matrices of rank one over the domain of principal ideals with respect to similarity transformation. Math. methods and physiko-mechanical fields (in Ukrainian). 2016, 59 (3), 68-76.
[13] Thompson R. C. On the matrices $A B$ and BA. Linear Algebra Appl. 1968, 1, 43-58.
[14] Williamson J. H. The characteristic polynomials of AB and BA. Edinburgh Math. Notes. 1954, 39, 13-13.

Прокіп В.М. Про подібність матрииь АВ і ВА над полем // Карпатські матем. публ. - 2018. — Т.10, №2. - С. 352-359.

Нехай A і $B — n \times n$ матриці над полем. Вивчення зв'язків між добутками матриць $A B$ і $B A$ має давню історію. Загальновідомо, що матриці $A B$ та $В А$ мають однакові характеристичні многочлени (отже, власні значення, сліди тощо). Один вагомий результат був отриманий X. Фландрерсом у 1951 році. Він вказав зв'язок між елементарними дільниками $A B$ та $B A$, який можна розглядати як критерій, коли дві матриці C і D можуть бути зображені у вигляді добутків $C=A B$ і $D=B A$. Якщо одна з матриць (A або B) є неособливою, то матриці $A B$ і $B A$ подібні. Якщо ж A і B особливі матриці, то матрищі $A B$ і $B A$ не завжди подібні. В статті наведено умови, за яких матриці $A B$ і $B A$ подібні. Поняття рангу відіграє важливу роль у цих дослідженнях.

Ключові слова і фрази: матриця, подібність, ранг.

[^0]: У $\Delta К 512.643$
 2010 Mathematics Subject Classification: 15A04, 15A21.

