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ON THE SOLUTIONS OF A CLASS OF NONLINEAR INTEGRAL EQUATIONS IN

CONE b-METRIC SPACES OVER BANACH ALGEBRAS

In this paper, we study the existence of the solutions of a class of functional integral equations by

using some fixed point results in cone b-metric spaces over Banach algebras. In order to obtain these

results we introduced and proved some properties of generalized weak ϕ-contractions, in which the

ϕ are nonlinear weak comparison functions. The obtained results are generalizations of results of

Van Dung N., Le Hang V. T., Huang H., Radenovic S. and Deng G. Also, some suitable examples are

given to illustrate obtained results.
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1 INTRODUCTION AND PRELIMINARIES

In 2007, Huang and Zhang [5] introduced the concept of a cone metric space and general-

ized Banach fixed point theorem in such spaces. Afterwards, several authors published many

papers on this topic. Aydi et al. [1, 2] proved some coupled coincidence point results on gen-

eralized distance in ordered cone metric spaces. Dordević et al. [4] considered fixed point and

common fixed point results for maps in tvs-cone metric spaces under contractive conditions

expressed in the terms of c-distance. By using an old Krein’s result and a result concerning

symmetric spaces, Jankovic et al. [10] showed in a very short way that fixed point results in

cone metric spaces obtained recently, in which the assumption that the underlying cone is

normal and solid is present, can be reduced to the corresponding results in metric spaces.

In 2013, Lia and Xu [12] introduced the notion of cone metric spaces over Banach algebras

and defined a generalized Lipschitz contraction with vector contractive coefficient instead of

usual real constant. The authors proved the existence of fixed points with the assumption

that the underlying cone is normal. Furthermore, they explained by an example that the fixed

point theorems in cone metric spaces over Banach algebra are not equivalent to those in met-

ric spaces, and so, such generalizations are the genuine ones. Latter, Xu and Radenović [16]

showed that the normality of the cone can be removed from the results of Liu and Xu [12]. In

2015, Huang and Radenović [6] introduced the notion of cone b-metric spaces over Banach al-

gebra and presented some common fixed point theorems in such spaces. Subsequently, Huang

and Radenović [7] considered the Banach type version of a fixed point result with the general-

ized Lipschitz constant k satisfying ρ(k) ∈ [0, 1
s ) where ρ(k) is the spectral radius of k. In 2017,

Huang et al. [8] generalized a famous result for Banach-type contractive map from ρ(k) ∈ [0, 1
s )
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to ρ(k) ∈ [0, 1) in cone b-metric spaces over Banach algebra with coefficient s ≥ 1. Very re-

cent, by using a nontrivial proof method Li and Huang [11] proved some fixed point results

for weak ϕ-contractions in cone metric spaces over Banach algebras and applied to investigate

the existence and uniqueness of a solution to two classes of equations. However, in the con-

struction of such applications, the functions ϕ considered in ϕ-contractions are simple linear

functions, for example see [6, Theorem 3.1] and [11, Theorem 3.2].

In this paper, we study the existence of the solutions of a class of functional integral equa-

tions by using some fixed point results in cone b-metric spaces over Banach algebras. In order

to obtain these results we introduced and proved some properties of generalized weak ϕ-

contractions, in which the ϕ are nonlinear weak comparison functions, and we also illustrated

obtained results by suitable examples.

Now we recall definitions and properties which will be useful in what follows.

Definition 1 ([14, p. 245]). Let (A, ‖.‖) be a Banach space over the real field R in which a

multiplication is defined that for all x, y, z ∈ A and for all α ∈ R satisfies

1) (xy)z = x(yz),

2) x(y + z) = xy + xz and (x + y)z = xz + yz,

3) α(xy) = (αx)y = x(αy),

4) ‖xy‖ ≤ ‖x‖‖y‖,

5) there is a unit element e with ‖e‖ = 1 such that xe = ex = x.

Then A is called a Banach algebra.

Definition 2 ([7, p. 567]). Let A be a Banach algebra with a unit e and a zero element θ. A

nonempty closed subset P of A is called a cone in A if

1) {θ, e} ⊂ P,

2) αP + βP ⊂ P, for all α, β ∈ R+,

3) P2 = PP ⊂ P,

4) P ∩ (−P) = {θ}.

Definition 3 ([7, p. 567]). Let A be a Banach algebra and P is a cone in A. We say that

1) P is a solid cone if int P 6= ∅, where int P denotes the interior of P;

2) P is a normal cone if there is a number M > 0 such that for all x, y ∈ A

θ � x � y implies ‖x‖ ≤ M‖y‖,

where ‖.‖ is the norm in A. The least positive value of M satisfying the above inequality is

called the normal constant.
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Note that, for any normal cone P we have M ≥ 1 (see [13]).

For a given cone P ⊂ A, we can define a partial ordering “ � ” with respect to P by x � y

if and only if y − x ∈ P. We write x ≺ y, if x � y and x 6= y, and denote x ≪ y if and only if

y − x ∈ intP.

In the sequel, unless otherwise specified, we always suppose that A is a Banach algebra, P

is a solid cone in A, and �, ≪ are the above partial orderings with respect to P.

Definition 4 ([5]). Let X be a nonempty set, A be a Banach algebra and d : X × X → A be a

map such that for all x, y, z ∈ X

1) θ � d(x, y), and d(x, y) = θ if and only if x = y,

2) d(x, y) = d(y, x),

3) d(x, z) � d(x, y) + d(y, z).

Then d is called a cone metric on X and (X,A, d) is called a cone metric space over Banach

algebra.

Definition 5 ([5]). Let (X,A, d) be a cone metric space over Banach algebra, {xn} be a sequence

in X and x ∈ X. Then

1) {xn} converges to x ∈ X if for each c ∈ intP there exists N ∈ N such that d(xn, x) ≪ c

for all n ≥ N. Then, we write lim
n→∞

xn = x or xn → x as n → ∞;

2) {xn} is a Cauchy sequence if for each c ∈ intP there exists N ∈ N such that d(xn, xm) ≪ c

for all n, m ≥ N;

3) (X,A, d) is called complete if each Cauchy sequence is convergent in X.

Definition 6 ([7]). Let X be a nonempty set, s ≥ 1 be a constant, A be a Banach algebra and

d : X × X → A be a map such that for all x, y, z ∈ X

1) 0 � d(x, y), and d(x, y) = 0 if only if x = y,

2) d(x, y) = d(y, x),

3) d(x, z) � s[d(x, y) + d(y, z)].

Then d is called a cone b-metric on X and (X,A, d, s) is called a cone b-metric space over

Banach algebra with the coefficient s.

Remark 1 ([7]). A cone metric space over Banach algebra must be a cone b-metric space over

Banach algebra. Conversely, it is not true. As a result, the notion of cone b-metric space over

Banach algebra greatly generalizes the notion of cone metric space over Banach algebra.

The following example shows that there exists a cone b-metric spaces over Banach algebras

which are not cone metric spaces over Banach algebras.
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Example 1 ([7]). Let A = C[0, 1] be the usual Banach space with the supremum norm. Define

multiplication in the usual way: (xy)(t) = x(t)y(t), t ∈ [0, 1]. Then A is a Banach algebra with

a unit e = 1. Put P = {x ∈ A : x(t) ≥ 0, t ∈ [0, 1]} and X = R. Define a map d : X × X → A
by d(x, y)(t) = |x − y|pet for all x, y ∈ X, where p > 1 is a constant. This makes (X,A, d, s)

into a cone b-metric space over Banach algebra with the coefficient s = 2p−1, but it is not a cone

metric space over Banach algebra.

Similar to Definition 5, we repeat the notions of convergent sequence, Cauchy sequence

and complete space in cone b-metric space over Banach algebra.

Definition 7 ([7]). Let (X,A, d, s) be a cone b-metric space over Banach algebra and {xn} be a

sequence in X. We say that

1) {xn} converges to x ∈ X if for each c ∈ intP there exists N ∈ N such that d(xn, x) ≪ c

for all n ≥ N. Then, we write lim
n→∞

xn = x or xn → x as n → ∞;

2) {xn} is a Cauchy sequence if for each c ∈ intP there exists N ∈ N such that d(xn, xm) ≪ c

for all n, m ≥ N;

3) (X,A, d) is a complete cone b-metric space if each Cauchy sequence in X is convergent.

Definition 8 ([4, Sect. 3.1]). A sequence {un} ⊂ P is called a c-sequence if for each c ∈ int P,

there exists N ∈ N such that un ≪ c for all n > N.

Lemma 1 ([7]). Let P be a solid cone in a Banach algebra A, {un} and {vn} be two c-sequences

in P. If α, β ∈ P are two arbitrarily given vectors, then {αun + βvn} is a c-sequence.

Lemma 2 ([14]). Let A be a Banach algebra. Then the spectral radius of k ∈ A equals to

ρ(k) = lim
n→∞

‖kn‖ 1
n = inf

n≥1
‖kn‖ 1

n .

Lemma 3 ([6]). Let A be a Banach algebra. Let k ∈ A and ρ(k) < 1. Then {kn} is a c-sequence.

Lemma 4 ([9]). Let A be a Banach algebra and u, v, w ∈ A. Then

(1) if u � v and v ≪ w, then u ≪ w;

(2) If u ≪ v and v ≪ w, then u ≪ w;

(3) If θ � u ≪ c for each c ∈ intP, then u = θ;

(4) αintP ⊆ intP for all α > 0;

(5) If c ∈ intP, θ � an and lim
n→∞

an = θ then there exists n0 ∈ N such that for all n > n0 we

have an ≪ c.

Definition 9 ([9]). Let (X,A, d, s) be a cone b-metric space over Banach algebra and B ⊆ X. An

element b ∈ B is called an interior point of B whenever there is θ ≪ p such that B0(b, p) ⊆ B,

where B0(b, p) = {y ∈ X : d(y, b) ≪ p}.

Definition 10 ([15, p. 246]). A function γ : R+ → R+ is called a comparison function if γ is

increasing and lim
n→∞

γn(u) = 0 for all u ∈ R+.
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The following some notions and property are well known in [11].

Definition 11 ([11]). Let A be a Banach algebra and P be a cone in A. A map ϕ : P → P is

called a weak comparison if the following conditions hold

(1) ϕ is nondecreasing with respect to �, that is, for all t1, t2 ∈ P and t1 � t2, implies that

ϕ(t1) � ϕ(t2);

(2) {ϕn(t)} is a c-sequence in P for all t ∈ P;

(3) if {un} is a c-sequence in P, then {ϕ(un)} is also a c-sequence in P.

Definition 12 ([11]). Let (X,A, d) be a cone metric space over Banach algebra and P be a cone in

A. Let ϕ : P → P be a weak comparison. Then a map f : X → X is called a weak ϕ-contraction

if for all x, y ∈ X,

d
(

f (x), f (y)
)

� ϕ
(

d(x, y)
)

.

Theorem 1 ([11]). Let (X,A, d) be a complete cone metric space over Banach algebra and

f : X → X be a weak ϕ-contraction. Then f has a unique fixed point u ∈ X and lim
n→∞

f n(x) = u

for each x ∈ X.

2 FIXED POINT RESULTS IN CONE b-METRIC SPACES OVER BANACH ALGEBRAS

First we extend the notion of weak ϕ-contraction in metric spaces to the setting of cone

b-metric spaces over Banach algebra as follows.

Definition 13. Let (X,A, d, s) be a cone b-metric space over Banach algebra and P be a cone in

A. Let ϕ : P → P be a weak comparison. Then a map f : X → X is called a generalized weak

ϕ-contraction if for all x, y ∈ X,

d
(

f (x), f (y)
)

� ϕ
(

d(x, y)
)

.

Lemma 5. Let (X,A, d, s) be a cone b-metric space over Banach algebra, P be a cone in A, and

f : X → X be a generalized weak ϕ-contraction. Then,

(1) for all t1, t2 ∈ P with t1 � t2 and all n ∈ N, we have ϕn(t1) � ϕn(t2);

(2) for all x, y ∈ X and all n ∈ N, we have

d
(

f n(x), f n(y)
)

� ϕn
(

d(x, y)
)

.

Proof. (1). For any t1, t2 ∈ P with t1 � t2, since ϕ is a weak comparison, we have

ϕ(t1) � ϕ(t2).

Then, we get

ϕ2(t1) = ϕ
(

ϕ(t1)
)

� ϕ
(

ϕ(t2)
)

= ϕ2(t2).

Continuing the above process, we obtain that for all n,

ϕn(t1) � ϕn(t2).



168 QUAN L.T., VAN AN T.

(2). For any x, y ∈ X, since f is a generalized weak ϕ-contraction, we have

d
(

f (x), f (y)
)

� ϕ
(

d(x, y)
)

.

Note that ϕ is a weak comparison, so we have

ϕ
(

d
(

f (x), f (y)
)

)

� ϕ
(

ϕ
(

d(x, y)
)

)

= ϕ2
(

d(x, y)
)

. (1)

Using f being a generalized weak ϕ-contraction again, we get

d
(

f 2(x), f 2(y)
)

� ϕ
(

d
(

f (x), f (y)
)

)

. (2)

From (1) and (2) we have

d
(

f 2(x), f 2(y)
)

� ϕ2
(

d(x, y)
)

.

Continuing this process we obtain that for all n,

d
(

f n(x), f n(y)
)

� ϕn
(

d(x, y)
)

.

Now, we establish some results for generalized weak ϕ-contraction maps in complete cone

b-metric space over Banach algebra.

Lemma 6. Let (X,A, d, s) be a complete cone b-metric space over Banach algebra and

f : X → X be a generalized weak ϕ-contraction. Then f has a unique fixed point u ∈ X and

for each x ∈ X, lim
n→∞

f n(x) = u.

Proof. Let any x ∈ X and put x0 = x, xn = f n(x) for all n ≥ 1.

Then, by Definition 13, for each c ∈ intP, exists n0 ∈ N such that ϕn0(c) ≪ s−1c. Using

Lemma 5.(2), for every n ∈ N we have

d(xn, xn+n0) � ϕn
(

d
(

x0, xn0

)

)

. (3)

Since {ϕn
(

d(x0, xn0)
)

} is a c-sequence then by (3) and Lemma 4.(1), we have {d(xn, xn+n0)} is

also a c-sequence. Hence, exists N1 ∈ N such that

d(xn, xn+n0) ≪ s−1c − ϕn0(c) for all n ≥ N1.

Put

B(xn, c) = {y ∈ X : d(xn, y) ≪ c} for all n ≥ N1 − 1. (4)

For each n ≥ N1 − 1, choosing y ∈ B(xn, c), by (3) and (4) we have

d(xn, f n0 y) � s[d(xn , xn+n0) + d(xn+n0 , f n0 y)]

� s[s−1c − ϕn0(c) + ϕn0(d(xn, y))]

≪ c − sϕn0(c) + sϕn0(c)

= c.



ON THE SOLUTIONS OF A CLASS OF NONLINEAR INTEGRAL EQUATIONS IN CONE b-METRIC SPACES . . . 169

This implies that B(xn, c) is f n0 -invariant. Hence, for each k ∈ N, we have

d(xn, xn+kn0
) = d(xn, f n0 xn) ≪ c, for all n ≥ N1 − 1. (5)

Using Lemma 5.(2), for every n ∈ N we get

sd(xn, xn+1) + s2d(xn+1, xn+2) + · · ·+ sn0 d(xn+n0−1, xn+n0)

� sϕn
(

d(x0, x1)
)

+ s2ϕn
(

d(x1, x2)
)

+ · · ·+ sn0 ϕn
(

d(xn0−1, xn0)
)

.
(6)

For each i = 0, 1, 2, ..., n0, we have {ϕn
(

d(xi, xi+1)
)

} is a c-sequences then by Lemma 1,

{sϕn
(

d(x0, x1)
)

+ s2 ϕn
(

d(x1, x2)
)

+ · · ·+ sn0 ϕn
(

d(xn0−1, xn0)
)

} is a c-sequence. Hence, by (6)

and Lemma 4.(1), we have

{sd(xn , xn+1) + s2d(xn+1, xn+2) + · · ·+ sn0 d(xn+n0−1, xn+n0)}

is also a c-sequence. So, for any c ∈ intP, exists N2 ∈ N such that

sd(xn, xn+1) + s2d(xn+1, xn+2) + · · ·+ sn0 d(xn+n0−1, xn+n0) ≪ c (7)

for all n ≥ N2.

Denote N = max{N1, N2}, for all m, n > N we put

km =
[m − N

n0

]

, kn =
[n − N

n0

]

,

where [ . ] stands for the integer part. Because

N ≤ m − kmn0 < N + n0, N ≤ n − knn0 < N + n0, (8)

from (8) we find that
∣

∣(n − knn0)− (m − kmn0)
∣

∣ < n0.

Hence, from (7) we have

d(xn−knn0
, xm−kmn0

) � sd(xn−knn0
, xn−knn0+1) + · · ·+ sn0 d(xn−knn0+n0−1, xn−knn0+n0

) ≪ c. (9)

Hence, from (5) and (9) we find that

d(xn, xm) � sd(xn, xn−knn0
) + s2d(xn−knn0

, xm−kmn0
) + s2d(xm−kmn0

, xm)

≪ (s + s2 + s2)c.

This implies that {xn} is a Cauchy sequence in (X,A, d, s). Since (X,A, d, s) is complete there

exists u ∈ X such that lim
n→∞

xn = u.

Next, we prove that u is the fixed point of f . Indeed, we have

d( f u, u) � sd( f u, xn) + sd(xn, u)

= sd( f u, f xn−1) + sd(xn, u)

� sϕ
(

d(u, xn−1)
)

+ sd(xn, u).

(10)

Since {d(xn , u)} is a c-sequence and ϕ is weak comparison, then {ϕ
(

d(u, xn−1)
)

} is also a

c-sequence. Hence, by Lemma 1 we have {sϕ
(

d(u, xn−1)
)

+ sd(xn, u)} is a c-sequence. By (10),
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Lemma 4.(3) and {sϕ
(

d(u, xn−1)
)

+ sd(xn, u)} is a c-sequence, we find that d( f u, u) = θ. This

implies that u is a fixed point of f .

Finally, we prove that the fixed point is unique. Assume that v is another fixed point of f .

Then we have

θ � d(u, v) = d
(

f n(u), f n(v)
)

� ϕn
(

d(u, v)
)

for all n ≥ 1. (11)

Since {ϕn
(

d(u, v)
)

} is a c-sequence then by (11) and Lemma 4.(3), we have d(u, v) = θ. This

implies that u = v.

So, f have unique fixed point u ∈ X and for each x ∈ X, lim
n→∞

f n(x) = u.

In Lemma 6, if we choose ϕ : P → P by ϕ(t) = kt, for all t ∈ A and k ∈ P such that

ρ(k) < 1, then we obtain the following.

Corollary 1 ([8]). Let (X,A, d, s) be a complete cone b-metric space over Banach algebra and

f : X → X be a map such that for all x, y ∈ X,

d( f (x), f (y)) � kd(x, y), (12)

where k ∈ P is a generalized Lipschitz constant with ρ(k) < 1. Then, f has a unique fixed

point u ∈ X and for each x ∈ X, lim
n→∞

f n(x) = u.

By choosing A = R and P = R+ in Lemma 6, then we obtain the following.

Corollary 2 ([3]). Let (X, d, s) be a complete b-metric space and f : X → X be a map such that

for all x, y ∈ X,

d( f (x), f (y)) ≤ ϕ(d(x, y)),

where ϕ : R+ → R+ is a comparison function. Then, f has a unique fixed point u ∈ X and for

each x ∈ X, lim
n→∞

f n(x) = u.

The following example shows the superiority of the main result in the sense that there

exist a complete cone b-metric space over Banach algebra and a map f : X → X such that

Corollary 1 is not applicable to, while our result is.

Example 2. Let A = R
2, P = {(x, y) ∈ A : x, y ≥ 0}, and x = (x1, x2), y = (y1, y2) ∈ A.

Define

(a) the norm of A by ‖(x1, x2)‖ = |x1|+ |x2|;

(b) the multiplication of A by xy = (x1, x2)(y1, y2) = (x1y1, x1y2 + x2y1);

(c) X = [0, ∞) and define d : X × X → A by d(x, y) =
(

|x − y|2, 0
)

for all x, y ∈ X;

(d) f : X → X, f (x) = x
x+1 for all x ∈ X;

(e) ϕ : P → P, ϕ(z1, z2) =
(

z1
z1+1 , 0

)

for all (z1, z2) ∈ P.

Then

(1) A is a Banach algebra with the identity element e = (1, 0) and θ = (0, 0);
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(2) for all x = (x1, x2), y = (y1, y2) ∈ A, x � y if and only if x1 ≥ y1 and x2 ≥ y2;

(3) (X,A, d, s) is a complete cone b-metric space over Banach algebra with s = 2;

(4) there does not exist k ∈ A with ρ(k) < 1 such that the condition (12) holds;

(5) all assumptions of Lemma 6 hold.

Proof. (1). See [11, Theorem 3.1].

(2). Since P = {(x, y) ∈ A : x, y ≥ 0}, for any x = (x1, x2), y = (y1, y2) ∈ A,

we have x � y if and only if (x1 − y1, x2 − y2) ∈ P. It is equivalent to x1 ≥ y1 and x2 ≥ y2.

(3). For any x, y, z ∈ X = [0, ∞) we have

• d(x, y) =
(

|x − y|2, 0
)

� (0, 0). So d(x, y) � θ, and d(x, y) = θ if and only if x = y;

• d(x, y) =
(

|x − y|2, 0
)

=
(

|y − x|2, 0
)

= d(y, x).

Since |x − z|2 ≤ 2
(

|x − y|2 + |y − z|2
)

, we have
(

|x − z|2, 0
)

≤ 2
[(

|x − y|2, 0
)

+
(

|y − z|2, 0
)]

.

It implies that

d(x, z) � 2
(

d(x, y) + d(y, z)
)

.

By the above, d is a cone b-metric on X with s = 2.

Now for any Cauchy sequence {xn} in X and for each c = (c1, c2) ∈ intP there exists

m0 ∈ N such that for all n, m > m0 we have

d(xn, xm) =
(

|xn − xm|2, 0
)

≪ (c1, c2) = c.

This implies that for each c1 > 0, we have |xn − xm| ≤ (c1)
1
2 for all n, m > m0. It implies

that {xn} is a Cauchy sequence in R. So there exists x ∈ R such that lim
n→∞

|xn − x| = 0.

Since xn ∈ X = R+ for all n and xn → x in R, we have x ∈ X. This implies that for each

c = (c1, c2) ∈ intP, there exists m0 ∈ N such that for all n > m0 we have |xn − x| ≤ (c1)
1
2 .

Therefore, we get that for all n > m0

d(xn, x) =
(

|xn − x|2, 0
)

≪ (c1, c2) = c.

This proves that {xn} convergent to x in (X,A, d, s). So (X,A, d, s) is complete.

By the above, (X,A, d, s) is a complete cone b-metric space over Banach algebra with s = 2.

(4). Firstly, we observe that for k = (k1, k2) ∈ P, by induction we have

kn = (k1, k2)
n = (kn

1 , nk2kn−1
1 ).

It implies that

ρ(k) = inf ‖kn‖ 1
n = inf

(

|kn
1 |+ |nk2kn−1

1 |
)

1
n . (13)

Then, if ρ(k) < 1, by (13), we get that k1 < 1.

On the contrary, suppose that there exists k = (k1, k2) ∈ P with ρ(k) < 1 such that

d
(

f (x), f (y)
)

� kd(x, y)

for all x, y ∈ X. Then for all x, y ∈ X,

(
∣

∣

∣

x

x + 1
− y

y + 1

∣

∣

∣

2
, 0
)

� (k1, k2)
(

|x − y|2, 0
)

.



172 QUAN L.T., VAN AN T.

For x 6= 0 and y = 0 we have

(∣

∣

∣

x

x + 1

∣

∣

∣

2
, 0
)

� (k1, k2)
(

|x|2, 0).

It is equivalent to
(
∣

∣

∣

x

x + 1

∣

∣

∣

2
, 0
)

�
(

k1|x|2, k2|x|2).

This implies that
|x|2

(x + 1)2
≤ k1|x|2.

Hence for all x 6= 0, we have
1

(x + 1)2
≤ k1. (14)

Letting x → 0+ in (14) we get 1 ≤ k1. This contradicts to the above observation.

(5). • For any z = (z1, z2), t = (t1, t2) ∈ P with z � t, that is, 0 ≤ z1 ≤ t1 and 0 ≤ z2 ≤ t2.

Then we have
z1

z1 + 1
≤ t1

t1 + 1
.

It implies that

ϕ(z) =
( z1

z1 + 1
, 0
)

�
( t1

t1 + 1
, 0
)

= ϕ(t).

So, for all z, t ∈ P with z � t, we have ϕ(z) � ϕ(t).

• Now for any z = (z1, z2) ∈ P we have by induction that ϕn(z) =
(

z1
nz1+1 , 0

)

. It follows

that

(0, 0) ≤
( z1

nz1 + 1
, 0
)

and lim
n→∞

z1

nz1 + 1
= 0.

This implies that

θ � ϕn(z) and lim
n→∞

ϕn(z) = θ.

Therefore, for each c = (c1, c2) ∈ intP, by Lemma 4.(5) there exists m0 ∈ N such that for all

n > m0 we have
( z1

nz1 + 1
, 0
)

≪ (c1, c2) = c.

This implies that
{

ϕn(z)
}

is a c-sequence in P.

• Suppose that {zn} = {(z(n)1 , z
(n)
2 )} is a c-sequence in P, then for each c = (c1, c2) ∈ intP,

there exists k0 ∈ N such that for all n > k0 we have (z
(n)
1 , z

(n)
2 ) ≪ (c1, c2) = c. This implies that

ϕ(zn) =
( z

(n)
1

z
(n)
1 + 1

, 0
)

� (z
(n)
1 , z

(n)
2 ) ≪ (c1, c2) = c, for all n > k0.

Therefore, {ϕ(zn)} is also a c-sequence in P.

Hence ϕ is a weak comparison.

Next, for any x, y ∈ X, we have

(
∣

∣

∣

x

x + 1
− y

y + 1

∣

∣

∣

2
, 0
)

=
(
∣

∣

∣

x − y

xy + x + y + 1

∣

∣

∣

2
, 0
)

≤
(
∣

∣

∣

|x − y|
|x − y|+ 1

∣

∣

∣

2
, 0
)

=
(
∣

∣

∣

|x − y|2
|x − y|2 + 2|x − y|+ 1

∣

∣

∣
, 0
)

≤
( |x − y|2
|x − y|2 + 1

, 0
)

.

(15)
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Note that

d
(

f (x), f (y)
)

= d
( x

x + 1
,

y

y + 1

)

=
(
∣

∣

∣

x

x + 1
− y

y + 1

∣

∣

∣

2
, 0
)

and

ϕ(d(x, y)) =
( |x − y|2
|x − y|2 + 1

, 0
)

.

So from (15) we find that d
(

f (x), f (y)
)

� ϕ(d(x, y)) for all x, y ∈ X, and f is a generalized

weak ϕ-contraction.

By the above, all assumptions of Lemma 6 hold.

3 APPLICATIONS TO THE NONLINEAR INTEGRAL EQUATIONS

In this section, we apply Lemma 6 to study the existence and uniqueness of the solution to

the nonlinear integral equations.

Lemma 7. Let C[a, b] be the set of all continuous functions on [a, b], where a, b ∈ R. Let A = R
2

and P = {(x, y) ∈ A : x, y ≥ 0} with the same norm, the same multiplication, and the same

partial order on A as stated in Example 2. Define d : C[a, b]× C[a, b] → A by

d(x, y) =
(

sup
t∈[a,b]

|x(t)− y(t)|2, sup
t∈[a,b]

|x(t)− y(t)|2
)

for all x, y ∈ C[a, b]. Then
(

C[a, b],A, d, s
)

is a complete cone b-metric space over Banach

algebra with s = 2.

Proof. For any x, y, z ∈ C[a, b] we have

d(x, y) =
(

sup
t∈[a,b]

|x(t)− y(t)|2, sup
t∈[a,b]

|x(t)− y(t)|2
)

≥ (0, 0). So d(x, y) � θ.

d(x, y) = θ if and only if sup
t∈[a,b]

|x(t)− y(t)|2 = 0 if and only if x(t) = y(t) for all t ∈ [a, b],

that is, x = y.

Since sup
t∈[a,b]

|x(t)− y(t)|2 = sup
t∈[a,b]

|y(t)− x(t)|2 for all t ∈ [a, b], we get that d(x, y) = d(y, x).

We have

|x(t)− z(t)|2 ≤ 2
(

|x(t)− y(t)|2 + |y(t)− z(t)|2
)

for all t ∈ [a, b].

It implies that

sup
t∈[a,b]

|x(t)− z(t)|2 ≤ 2
(

sup
t∈[a,b]

|x(t)− y(t)|2 + sup
t∈[a,b]

|y(t)− z(t)|2
)

for all t ∈ [a, b].

That is,

d(x, z) � 2
(

d(x, y) + d(y, z)
)

.

By the above, d is a cone b-metric on X with s = 2.

Now for any Cauchy sequence {xn} in
(

C[a, b],A, d, s
)

and for each c = (c1, c2) ∈ intP,

there exists m0 ∈ N such that for all n, m > m0 we have

d(xn, xm) =
(

sup
t∈[a,b]

|xn(t)− xm(t)|2, sup
t∈[a,b]

|xn(t)− xm(t)|2
)

≪ (c1, c2) = c. (16)
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This implies that

sup
t∈[a,b]

|xn(t)− xm(t)| ≤
√

ci, i = 1, 2, for all n, m > m0. (17)

So {xn} is a Cauchy sequence in C[a, b]. Since C[a, b] with the sup-norm is complete, there

exists x ∈ C[a, b] such that lim
n→∞

xn = x. Hence by (17) we have

sup
t∈[a,b]

|xn(t)− x(t)| ≤ √
ci, i = 1, 2, for all n > m0.

This implies by (16) that

d(xn, x) =
(

sup
t∈[a,b]

|xn(t)− x(t)|2, sup
t∈[a,b]

|xn(t)− x(t)|2
)

≪ (c1, c2) = c, for all n > m0.

This proves that {xn} converges to x in
(

C[a, b],A, d, s
)

. So
(

C[a, b],A, d, s
)

is complete.

By the above,
(

C[a, b],A, d, s
)

is a complete cone b-metric space over Banach algebra with

s = 2.

Theorem 2. Let
(

C[a, b],A, d, s
)

be a complete cone b-metric space over Banach algebra in

Lemma 7. Consider a integral equation

x(t) = η(t) +
∫ b

a
K
(

t, x(r)
)

dr, t ∈ [a, b], (18)

where x ∈ C[a, b], η ∈ C[a, b] and K : [a, b] × R → R. Assume that the following hypotheses

hold:

1) for each t ∈ [a, b], K
(

t, x(r)
)

is integrable with respect to r on [a, b];

2) there exists a continuous function ψ : [a, b]× [a, b] → R with sup
t∈[a,b]

∫ b

a

∣

∣ψ(t, r)
∣

∣dr ≤ 1 and

there exists a comparison function γ such that for all t, r ∈ [a, b] and all x, y ∈ C[a, b],

∣

∣K
(

t, x(r)
)

− K
(

t, y(r)
)∣

∣ ≤
∣

∣ψ(t, r)
∣

∣γ
(

|x(r)− y(r)|
)

.

Then the integral equation (18) has a unique solution u ∈ C[a, b].

Proof. Let f : C[a, b] → C[a, b] be a map defined by

(

f (x)
)

(t) = η(t) +
∫ b

a
K
(

t, x(r)
)

dr, x ∈ C[a, b], t ∈ [a, b].
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For any x, y ∈ C[a, b], we have

d
(

(

f (x)
)

(t),
(

f (y)
)

(t)
)

=
(

sup
t∈[a,b]

∣

∣

(

f (x)
)

(t)−
(

f (y)
)

(t)
∣

∣

2
, sup

t∈[a,b]

∣

∣

(

f (x)
)

(t)−
(

f (y)
)

(t)
∣

∣

2
)

=
(

sup
t∈[a,b]

∣

∣

∣

∫ b

a

[

K
(

t, x(r)
)

− K
(

t, y(r)
)

]

dr
∣

∣

∣

2
, sup

t∈[a,b]

∣

∣

∣

∫ b

a

[

K
(

t, x(r)
)

− K
(

t, y(r)
)

]

dr
∣

∣

∣

2)

≤
(

sup
t∈[a,b]

[

∫ b

a

∣

∣

∣
K
(

t, x(r)
)

− K
(

t, y(r)
)

∣

∣

∣
dr
]2

, sup
t∈[a,b]

[

∫ b

a

∣

∣

∣
K
(

t, x(r)
)

− K
(

t, y(r)
)

∣

∣

∣
dr
]2)

≤
(

sup
t∈[a,b]

[

∫ b

a

∣

∣ψ(t, r)
∣

∣γ
(

|x(r)− y(r)|
)

dr
]2

, sup
t∈[a,b]

[

∫ b

a

∣

∣ψ(t, r)
∣

∣γ
(

|x(r)− y(r)|
)

dr
]2)

≤
(

sup
t∈[a,b]

[

∫ b

a

∣

∣ψ(t, r)
∣

∣γ
(

sup
r∈[a,b]

|x(r)− y(r)|
)

dr
]2

, sup
t∈[a,b]

[

∫ b

a

∣

∣ψ(t, r)
∣

∣γ
(

sup
r∈[a,b]

|x(r)− y(r)|
)

dr
]2)

≤
(

γ2
(

sup
r∈[a,b]

|x(r)− y(r)|
)

, γ2
(

sup
r∈[a,b]

|x(r)− y(r)|
)

)

=
(

γ2
(

√

sup
r∈[a,b]

|x(r)− y(r)|2
)

, γ2
(

√

sup
r∈[a,b]

|x(r)− y(r)|2
))

= ϕ
(

sup
r∈[a,b]

|x(r)− y(r)|2
)

, sup
r∈[a,b]

|x(r)− y(r)|2
)

)

= ϕ
(

d(x, y)
)

,

where ϕ : P → P defined by ϕ(z) = ϕ(z1, z2) =
(

γ2(
√

z1), γ2(
√

z2)
)

for all z = (z1, z2) ∈ P.

Now we prove that ϕ(z) is a weak comparison.

• For any z = (z1, z2), t = (t1, t2) ∈ P with z � t. Then we have 0 ≤ z1 ≤ t1 and

0 ≤ z2 ≤ t2. It follows that

0 ≤ γ(
√

z1) ≤ γ(
√

t1) and 0 ≤ γ(
√

z2) ≤ γ(
√

t2).

This implies that

γ2(
√

z1) ≤ γ2(
√

t1) and γ2(
√

z2) ≤ γ2(
√

t2).

Therefore, we get

ϕ(z) =
(

γ2(
√

z1), γ2(
√

z2)
)

�
(

γ2(
√

t1), γ2(
√

t2)
)

= ϕ(t).

So, for all z, t ∈ P with z � t, we have ϕ(z) � ϕ(t).

• Since z = (z1, z2) ∈ P and γ is the comparison function, we have

(0, 0) ≤
(

γ2n(
√

z1), γ2n(
√

z2)
)

and lim
n→∞

γ2n(
√

z1) = lim
n→∞

γ2n(
√

z2) = 0.

This implies that

θ � ϕn(z) and lim
n→∞

ϕn(z) = θ.

Therefore, for each c = (c1, c2) ∈ intP, by Lemma 4.(5) there exists m0 ∈ N such that for all

n > m0 we have

ϕn(z) ≪ (c1, c2) = c.



176 QUAN L.T., VAN AN T.

This prove that
{

ϕn(z)
}

is a c-sequence in P.

• Suppose that {zn} = {(z(n)1 , z
(n)
2 )} is a c-sequence in P, then for each c = (c1, c2) ∈ intP,

there exists l0 ∈ N such that for all n > l0 we have (z
(n)
1 , z

(n)
2 ) ≪ (c1, c2). Since γ is a compari-

son function, we find that

ϕ(zn) = ϕ
(

z
(n)
1 , z

(n)
2

)

=
(

γ2
(

√

z
(n)
1

)

, γ2
(

√

z
(n)
2

)

)

�
(

γ
(

√

z
(n)
1

)

, γ
(

√

z
(n)
2

)

)

�
(

√

z
(n)
1 ,

√

z
(n)
2

)

≪ (
√

c1,
√

c2).

This implies that {ϕ(zn)} is also a c-sequence in P. Hence ϕ is a weak comparison.

Thus, all the conditions of Lemma 6 hold, and hence the integral equation (18) has a unique

solution u ∈ C[a, b].

The following example guarantees the existence of the function K, ψ, γ and η that satisfies

all assumptions in Theorem 2.

Example 3. Let C[0, 1] be the set of all continuous functions on [0, 1]. Consider the nonlinear

integral equation

x(t) = t −
(3

4
+ ln

2
√

6

9

)

. sin t +

1
∫

0

r. sin t. ln
(

1 +
1

2
|x(r)|

)

dr, t ∈ [0, 1]. (19)

Put

η(t) = t −
(3

4
+ ln

2
√

6

9

)

. sin t, ψ(t, r) = r. sin t for all t, r ∈ [0, 1],

and

K
(

t, x(r)
)

= r. sin t. ln
(

1 +
1

2
|x(r)|

)

for all x ∈ C[0, 1] and all t, r ∈ [0, 1].

Then

(1) η ∈ C[0, 1] and K
(

t, x(r)
)

is integrable with respect to r on [0, 1];

(2) ψ(t, r) is continuous on [0, 1]× [0, 1] and sup
t∈[0,1]

1
∫

0

| ψ(t, r) | dr < 1;

(3) put γ(u) = ln(1 + 1
2 u) for all u ∈ R+, we have γ is a comparison function;

(4) for all t, r ∈ [0, 1] and x, y ∈ C[0, 1], we have

∣

∣K
(

t, x(r)
)

− K
(

t, y(r)
)
∣

∣ ≤
∣

∣ψ(t, r)
∣

∣γ
(

|x(r)− y(r)|
)

.

Proof. (1). Since η(t) = t −
(

3
4 + ln 2

√
6

9

)

. sin t for all t ∈ [0, 1], we have η ∈ C[0, 1]. Since

x ∈ C[0, 1], we have K
(

t, x(r)
)

= r. sin t. ln
(

1 + 1
2 |x(r)|

)

is integrable with respect to r on [0, 1].

(2). It is easy to see that ψ(t, r) is continuous on [0, 1]× [0, 1] and sup
t∈[0,1]

1
∫

0

| ψ(t, r) | dr < 1.

(3). For all u1, u2 ∈ R+ and u1 ≤ u2, we have γ(u1) = ln(1 + 1
2 u1) ≤ ln(1 + 1

2 u2) = γ(u2).
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For any u ∈ R+, we have

γ(u) = ln(1 +
1

2
u) ≤ 1

2
u

and

γ2(u) = γ
(

γ(u)
)

= ln
(

1 +
1

2
ln(1 +

1

2
u)

)

≤ 1

2
ln(1 +

1

2
u) ≤ 1

22
u.

Continuing the above process we obtain that for all n,

γn(u) ≤ 1

2n
u.

From the above, we have γ is increasing and lim
n→∞

γn(u) = 0.

(4). Now let x, y ∈ C[0, 1]. Then, for each r, t ∈ [0, 1], we have

| K
(

t, x(r)
)

− K
(

t, y(r)
)

| =
∣

∣

∣
r. sin t. ln

(

1 +
1

2
|x(r)|

)

− r. sin t. ln
(

1 +
1

2
|y(r)|

)

∣

∣

∣

= |r. sin t|.
∣

∣

∣
ln

(

1 +
1

2
|x(r)|

)

− ln
(

1 +
1

2
|y(r)|

)

∣

∣

∣

= |r. sin t|.
∣

∣

∣
ln

(1 + 1
2 |x(r)|

1 + 1
2 |y(r)|

)∣

∣

∣

= |r. sin t|.
∣

∣

∣
ln

(

1 +
1
2 |x(r)| − 1

2 |y(r)|
1 + 1

2 |y(r)|
)
∣

∣

∣

≤ |r. sin t|.
∣

∣

∣
ln

(

1 +
1
2 |x(r)− y(r)|

1 + 1
2 |y(r)|

)
∣

∣

∣

≤ |r. sin t|.
∣

∣

∣
ln

(

1 +
1

2

∣

∣x(r)− y(r)
∣

∣

)∣

∣

∣

=
∣

∣ψ(t, r)
∣

∣.γ
(
∣

∣x(r)− y(r)
∣

∣

)

.

From the above, K, ψ, γ and η satisfy all assumptions of Theorem 2. Hence the integral

equation (19) has a unique solution u ∈ C[0, 1].
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[10] Jankovic S., Kadelburg Z., Radenović S. On cone metric spaces: a survey. Nonlinear Anal. 2011, 74 (7), 2591–

2601. doi:10.1016/j.na.2010.12.014

[11] Li B., Huang H. Fixed point results for weak ϕ-contractions in cone metric spaces over Banach algebras and applica-

tions. J. Funct. Spaces 2017, 2017 (5), 1–6. doi:10.1155/2017/5054603

[12] Liu H., Xu S. Cone metric spaces over Banach algebras and fixed point theorems of generalized Lipschitz mappings.

Fixed Point Theory Appl. 2013, 2013, 1–10. doi:10.1186/1687-1812-2013-320

[13] Rezapour Sh., Hamlbarani R. Some notes on the paper Cone metric spaces and fixed point theorems of contractive

mappings. Math. Anal. Appl. 2008, 345 (2), 719–724. doi:10.1016/j.jmaa.2008.04.049

[14] Rudin W. Functional Analysis, McGraw-Hill, New York, NY, USA, 2nd edition, 1991.
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У данiй роботi ми вивчаємо iснування розв’язкiв деякого класу функцiональних iнтеграль-

них рiвнянь з використанням деяких результатiв про фiксовану точку у конiчних b-метричних

просторах над банаховими алгебрами. Для отримання цих результатiв ми ввели i довели деякi

властивостi узагальнених слабких ϕ-скорочень, в яких ϕ є нелiнiйними слабкими функцiями

порiвняння. Отриманi результати є узагальненнями результатiв Van Dung N., Le Hang V. T.,

Huang H., Radenovic S. i Deng G. Також, наведено деякi вiдповiднi приклади для iлюстрацiї

отриманих результатiв.

Ключовi слова i фрази: конiчний b-метричний простiр над банаховою алгеброю, ϕ-скорочен-

ня, c-послiдовнiсть, нерухома точка, iнтегральне рiвняння.


