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ON THE SOLUTIONS OF A CLASS OF NONLINEAR INTEGRAL EQUATIONS IN
CONE b-METRIC SPACES OVER BANACH ALGEBRAS

In this paper, we study the existence of the solutions of a class of functional integral equations by
using some fixed point results in cone b-metric spaces over Banach algebras. In order to obtain these
results we introduced and proved some properties of generalized weak ¢-contractions, in which the
@ are nonlinear weak comparison functions. The obtained results are generalizations of results of
Van Dung N, Le Hang V. T., Huang H., Radenovic S. and Deng G. Also, some suitable examples are
given to illustrate obtained results.
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1 INTRODUCTION AND PRELIMINARIES

In 2007, Huang and Zhang [5] introduced the concept of a cone metric space and general-
ized Banach fixed point theorem in such spaces. Afterwards, several authors published many
papers on this topic. Aydi et al. [1,2] proved some coupled coincidence point results on gen-
eralized distance in ordered cone metric spaces. Dordevi¢ et al. [4] considered fixed point and
common fixed point results for maps in tvs-cone metric spaces under contractive conditions
expressed in the terms of c-distance. By using an old Krein’s result and a result concerning
symmetric spaces, Jankovic et al. [10] showed in a very short way that fixed point results in
cone metric spaces obtained recently, in which the assumption that the underlying cone is
normal and solid is present, can be reduced to the corresponding results in metric spaces.

In 2013, Lia and Xu [12] introduced the notion of cone metric spaces over Banach algebras
and defined a generalized Lipschitz contraction with vector contractive coefficient instead of
usual real constant. The authors proved the existence of fixed points with the assumption
that the underlying cone is normal. Furthermore, they explained by an example that the fixed
point theorems in cone metric spaces over Banach algebra are not equivalent to those in met-
ric spaces, and so, such generalizations are the genuine ones. Latter, Xu and Radenovi¢ [16]
showed that the normality of the cone can be removed from the results of Liu and Xu [12]. In
2015, Huang and Radenovi¢ [6] introduced the notion of cone b-metric spaces over Banach al-
gebra and presented some common fixed point theorems in such spaces. Subsequently, Huang
and Radenovi¢ [7] considered the Banach type version of a fixed point result with the general-
ized Lipschitz constant k satisfying p(k) € [0, 1) where p(k) is the spectral radius of k. In 2017,

Huang et al. [8] generalized a famous result for Banach-type contractive map from p(k) € [0, 1)
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to p(k) € [0,1) in cone b-metric spaces over Banach algebra with coefficient s > 1. Very re-
cent, by using a nontrivial proof method Li and Huang [11] proved some fixed point results
for weak @-contractions in cone metric spaces over Banach algebras and applied to investigate
the existence and uniqueness of a solution to two classes of equations. However, in the con-
struction of such applications, the functions ¢ considered in ¢-contractions are simple linear
functions, for example see [6, Theorem 3.1] and [11, Theorem 3.2].

In this paper, we study the existence of the solutions of a class of functional integral equa-
tions by using some fixed point results in cone b-metric spaces over Banach algebras. In order
to obtain these results we introduced and proved some properties of generalized weak ¢-
contractions, in which the ¢ are nonlinear weak comparison functions, and we also illustrated
obtained results by suitable examples.

Now we recall definitions and properties which will be useful in what follows.

Definition 1 ([14, p. 245]). Let (A, ||.||) be a Banach space over the real field R in which a
multiplication is defined that for all x,y,z € A and for all x € R satisties

1) (xy)z = x(yz),

2) x(y+z)=xy+xzand (x +y)z = xz+yz,

3) a(xy) = (ax)y = x(ay),

4) [lxyll < llx[llyll,

5) there is a unit element e with ||e|| = 1 such that xe = ex = x.
Then A is called a Banach algebra.

Definition 2 ([7, p. 567]). Let A be a Banach algebra with a unit e and a zero element 6. A
nonempty closed subset P of A is called a cone in A if

1) {6,e} C P,
2) aP+ BP C P, foralla, B € Ry,
3) P2=PP C P,
4) Pn(—P) = {6}.
Definition 3 ([7, p. 567]). Let A be a Banach algebra and P is a cone in A. We say that
1) P is a solid cone if int P # &, where int P denotes the interior of P;
2) P is a normal cone if there is a number M > 0 such that for allx,y € A

6 < x <y implies ||x|| < M||y||,

where ||.|| is the norm in A. The least positive value of M satisfying the above inequality is
called the normal constant.
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Note that, for any normal cone P we have M > 1 (see [13]).

For a given cone P C A, we can define a partial ordering “ < ” with respect to Pby x <y
if and only if y — x € P. We write x < y, if x < y and x # y, and denote x < y if and only if
Yy — x € intP.

In the sequel, unless otherwise specified, we always suppose that A is a Banach algebra, P
is a solid cone in A, and =, < are the above partial orderings with respect to P.

Definition 4 ([5]). Let X be a nonempty set, A be a Banach algebra andd : X x X — A be a
map such that for all x,y,z € X

1) 6 Rd(x,y),andd(x,y) =0 ifand onlyifx =y,
2) d(x,y) = d(y, x),
3) d(x,z) =d(x,y) +d(y,z).

Then d is called a cone metric on X and (X, .A,d) is called a cone metric space over Banach
algebra.

Definition 5 (5]). Let (X, A, d) be a cone metric space over Banach algebra, {x, } be a sequence
in X and x € X. Then

1) {xn} converges to x € X if for each ¢ € intP there exists N € IN such that d(x,,x) < ¢

foralln > N. Then, we write lim x,, = x orx,, — x asn — oo;
n—oo

2) {xy} is a Cauchy sequence if for each c € intP there exists N € N such thatd(x,, x,) < ¢
foralln,m > N;

3) (X, .A,d) is called complete if each Cauchy sequence is convergent in X.

Definition 6 ([7]). Let X be a nonempty set, s > 1 be a constant, A be a Banach algebra and
d: X x X — A be amap such that forall x,y,z € X

1) 0<d(x,y),andd(x,y) =0ifonlyifx =y,
2) d(x,y) = d(y, x),
3) d(x,z) = s[d(x,y) +d(y,z)].

Then d is called a cone b-metric on X and (X, A,d,s) is called a cone b-metric space over
Banach algebra with the coefficient s.

Remark 1 ([7]). A cone metric space over Banach algebra must be a cone b-metric space over
Banach algebra. Conversely, it is not true. As a result, the notion of cone b-metric space over
Banach algebra greatly generalizes the notion of cone metric space over Banach algebra.

The following example shows that there exists a cone b-metric spaces over Banach algebras
which are not cone metric spaces over Banach algebras.
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Example 1 ([7]). Let A = C[0, 1] be the usual Banach space with the supremum norm. Define
multiplication in the usual way: (xy)(t) = x(t)y(t), t € [0,1]. Then A is a Banach algebra with
aunite =1. PutP = {x € A:x(t) >0,t € [0,1]} and X = R. Defineamapd : X x X — A
by d(x,y)(t) = |x — y|Pe! for all x,y € X, where p > 1 is a constant. This makes (X, A, d, s)
into a cone b-metric space over Banach algebra with the coefficient s = 27 —1 butitis nota cone
metric space over Banach algebra.

Similar to Definition 5, we repeat the notions of convergent sequence, Cauchy sequence
and complete space in cone b-metric space over Banach algebra.

Definition 7 ([7]). Let (X, A, d,s) be a cone b-metric space over Banach algebra and {x, } be a
sequence in X. We say that

1) {x,} converges to x € X if for each ¢ € intP there exists N € IN such that d(x,,x) < ¢

foralln > N. Then, we write lim x,, = x orx,, — x asn — oo;
n—o00

2) {x,} is a Cauchy sequence if for each c € intP there exists N € N such thatd(x,, x,) < ¢
foralln,m > N;

3) (X, .A,d) is a complete cone b-metric space if each Cauchy sequence in X is convergent.

Definition 8 ([4, Sect. 3.1]). A sequence {u,} C P is called a c-sequence if for each ¢ € int P,
there exists N € N such that u, < c foralln > N.

Lemma 1 ([7]). Let P be a solid cone in a Banach algebra A, {u,} and {v,} be two c-sequences
inP. Ifa, B € P are two arbitrarily given vectors, then {au, + Bv,} is a c-sequence.

Lemma 2 ([14]). Let A be a Banach algebra. Then the spectral radius of k € A equals to
p(k) = Jim [[k"[[7 = inf [[K"]|.

Lemma 3 ([6]). Let A be a Banach algebra. Letk € A and p(k) < 1. Then {k"} is a c-sequence.
Lemma 4 ([9]). Let A be a Banach algebra and u,v,w € A. Then

(1) ifu R vandv < w, thenu K w;

(2) Ifu < vandv < w, thenu < w;

(3) If 6 < u < c foreach c € intP, thenu = 6;

(4) aintP C intP for allx > 0;

(5) If c € intP, 0 = a, and r}gn a, = 0 then there exists ny € IN such that for all n > ng we
havea, < c.

Definition 9 ([9]). Let (X, A, d,s) be a cone b-metric space over Banach algebra and B C X. An
element b € B is called an interior point of B whenever there is § < p such that By(b, p) C B,
where By(b,p) = {y € X :d(y,b) < p}.

Definition 10 ([15, p. 246]). A function v : Ry — Ry is called a comparison function if vy is
increasing and 1211 v"(u) =0 forallu € Ry.
n—o00
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The following some notions and property are well known in [11].

Definition 11 ([11]). Let A be a Banach algebra and P be a cone in A. Amap ¢ : P — P is
called a weak comparison if the following conditions hold

(1) ¢ is nondecreasing with respect to <, that is, for all t;,t; € P and t; < tp, implies that
p(t1) =2 @(t2);

2) {¢"(t)} is a c-sequence in P for all t € P;
(3) if {u,} is a c-sequence in P, then {¢(uy)} is also a c-sequence in P.

Definition 12 (11]). Let (X, A, d) be a cone metric space over Banach algebra and P be a cone in
A. Let ¢ : P — P be a weak comparison. Then amap f : X — X is called a weak ¢-contraction
ifforallx,y € X,

d(f(x), f(y) = e(d(x,y)).

Theorem 1 ([11]). Let (X, .A,d) be a complete cone metric space over Banach algebra and
f : X — X be a weak ¢-contraction. Then f has a unique fixed pointu € X and r}gn f'(x)=u

foreach x € X.

2 FIXED POINT RESULTS IN CONE b-METRIC SPACES OVER BANACH ALGEBRAS

First we extend the notion of weak @-contraction in metric spaces to the setting of cone
b-metric spaces over Banach algebra as follows.

Definition 13. Let (X, A, d, s) be a cone b-metric space over Banach algebra and P be a cone in
A. Let ¢ : P — P be a weak comparison. Then a map f : X — X is called a generalized weak
@-contraction if for all x,y € X,

d(f(x), f(y) = e(d(x,y)).

Lemma 5. Let (X, A,d,s) be a cone b-metric space over Banach algebra, P be a cone in A, and
f : X — X be a generalized weak ¢-contraction. Then,

(1) forallty,t; € P witht; <ty and alln € IN, we have ¢"(t1) = ¢"(t2);

(2) forallx,y € X and alln € IN, we have
d(f"(x), f*(y)) = ¢"(d(x,y))-
Proof. (1). For any tq,t, € P with t; < t;, since ¢ is a weak comparison, we have

@(t1) = o(t2).

Then, we get
¢'(t) = o(9(h)) = p(p(t)) = ¢*(t2).

Continuing the above process, we obtain that for all n,

¢"(t1) 2 9" (t2).
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(2). For any x,y € X, since f is a generalized weak ¢-contraction, we have

d(f(x), f(v)) = e(d(xy)).

Note that ¢ is a weak comparison, so we have

p(d(f(x). F1)) = 9(@(d(x,y) ) = 9*(d(x.1)). 1)

Using f being a generalized weak ¢-contraction again, we get

A(F2(x), £2(y) = 9(d(F), fB)) )- @
From (1) and (2) we have
d(f2(x), f(v) = ¢*(d(x,y))-
Continuing this process we obtain that for all n,
d(f"(x), f*(y)) = ¢"(d(x,y))-
O

Now, we establish some results for generalized weak @-contraction maps in complete cone
b-metric space over Banach algebra.

Lemma 6. Let (X, A,d,s) be a complete cone b-metric space over Banach algebra and
f : X — X be a generalized weak ¢-contraction. Then f has a unique fixed point u € X and
foreach x € X, li_r>n f*(x) = u.

n—oo

Proof. Letany x € X and put xop = x, x, = f*(x) foralln > 1.
Then, by Definition 13, for each ¢ € intP, exists np € IN such that ¢ (c) < s~!c. Using
Lemma 5.(2), for every n € IN we have

d(xn, Xpiny) 2 @" (d(xo, xno)). 3)

Since {¢" (d(x0, Xy,)) } is a c-sequence then by (3) and Lemma 4.(1), we have {d(xu, Xu4n,)} is
also a c-sequence. Hence, exists N; € IN such that

d(Xn, Xniny) K stc— @™ (c) forall n > Nj.
Put
B(xp,c) ={y € X:d(xn,y) <c} foralln > N; — 1. 4)
For each n > N — 1, choosing y € B(xy, ¢), by (3) and (4) we have

d(xn, fY) sld(xn, Xn-tng) + d(Xnng, 1Y)

sls™c — ™ (c) + ¢"(d(xu,y))]
< ¢—s¢™(c)+s9™(c)

= C.

=
=
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This implies that B(xy, ¢) is f"0-invariant. Hence, for each k € IN, we have
d(Xn, Xpikny) = d(xn, fPx,) < ¢, foralln > Ny — 1. (5)
Using Lemma 5.(2), for every n € IN we get

sd(xn, Xn11) + Szd(xn—i-l/ Xpg2) +-- Snod(xn+n0—1z xn+n0)

6
=< s¢" (d(x0,x1)) + szfp"(d(xl,xz)) 4 4 5"09" (d(Xng—1, Xng) ) - ©)

For each i = 0,1,2,...,n9, we have {¢" (d(.Xi,Xi+1))} is a c-sequences then by Lemma 1,
{s@™ (d(x0,x1)) + 5*@" (d(x1,x2)) + - - - + "0 @™ (d(xy,—1, Xny)) } is a c-sequence. Hence, by (6)
and Lemma 4.(1), we have

{sd(xn, Xps1) + 82d (X1, Xng2) + -+ - + 8™ (X g1, Xnrng) }
is also a c-sequence. So, for any ¢ € intP, exists N, € IN such that
Sd(xnr xn+1) + Szd(xn+1/ xn+2) Tt Snod(xr&noflr xn+n0) <c (7)

foralln > Ns.
Denote N = max{Nj, N, }, for all m, n > N we put

o= (1], 1= [122)

where [ .] stands for the integer part. Because
N<m-—kuynyg<N+ny, N<n-—kyny<N+ny, (8)

from (8) we find that
|(n — knno) — (m — kyno)| < no.

Hence, from (7) we have

d(xnfknnorxmfkmno) = Sd(xnfknnor xnfknnoJrl) T+t Snod(xnfknn0+n071/ xnfknnoJrno) <. (9)
Hence, from (5) and (9) we find that

d(xﬂf xm) = Sd(xn/ xn—knno) + Szd(xn—knnoz xm—kmno) + Szd(xm—kmnol xm)
< (s+8%+8)c.
This implies that {x, } is a Cauchy sequence in (X, A, d, s). Since (X, A, d, s) is complete there
exists # € X such that 1Lm Xp = U.
n oo

Next, we prove that u is the fixed point of f. Indeed, we have
d(fu,u) < sd(fu,x,) + sd(xn, u)
= sd(fu, fx,—1) + sd(xu, u) (10)
< so(d(u,xy-1)) + sd(xn, u).

Since {d(x,,u)} is a c-sequence and ¢ is weak comparison, then {¢(d(u,x,_1))} is also a
c-sequence. Hence, by Lemma 1 we have {s¢(d(u, x,_1)) + sd(x,, 1)} is a c-sequence. By (10),
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Lemma 4.(3) and {s¢(d(u, x,_1)) + sd(x,, u)} is a c-sequence, we find that d(fu,u) = 6. This
implies that u is a fixed point of f.

Finally, we prove that the fixed point is unique. Assume that v is another fixed point of f.
Then we have

0 <d(u,v) =d(f"(u),f"(v)) = ¢"(d(u,v)) foralln > 1. (11)

Since {¢" (d(u,v))} is a c-sequence then by (11) and Lemma 4.(3), we have d(u,v) = 6. This
implies that u = v.
So, f have unique fixed point # € X and for each x € X, nh_r>n f'(x) = u. O

In Lemma 6, if we choose ¢ : P — P by ¢(t) = kt, forallt € A and k € P such that
p(k) < 1, then we obtain the following.

Corollary 1 ([8]). Let (X,.A,d,s) be a complete cone b-metric space over Banach algebra and
f : X — X be a map such that forall x,y € X,

d(f(x), f(y)) = kd(x,y), (12)

where k € P is a generalized Lipschitz constant with p(k) < 1. Then, f has a unique fixed
pointu € X and for each x € X, lgn ' (x) = u.
n—oo

By choosing A = R and P = Ry in Lemma 6, then we obtain the following.

Corollary 2 ([3]). Let (X,d,s) be a complete b-metric space and f : X — X be a map such that
forallx,y € X,

d(f(x), f(y)) < 9(d(x,y)),

where ¢ : Ry — R is a comparison function. Then, f has a unique fixed pointu € X and for
eachx € X, lgn f"(x) = u.
n—oo

The following example shows the superiority of the main result in the sense that there
exist a complete cone b-metric space over Banach algebra and a map f : X — X such that
Corollary 1 is not applicable to, while our result is.

Example 2. Let A = R%, P = {(x,y) € A: x,y >0}, and x = (x1,x2), y = (y1,42) € A.
Define

(a) the norm of A by ||(x1,x2)|| = |x1| + |x2|;
(b) the multiplication of A by xy = (x1, x2)(y1,¥2) = (X1Yy1, X1y2 + X211);
(c) X = [0,00) and defined : X x X — A by d(x,y) = (|x —y|?,0) forallx,y € X;

(d) f: X=X, f(x) = 57 forallx € X;

(€ ¢ :P— P, ¢(z1,22) = <%,0> forall (z1,z3) € P.
Then

(1) A is a Banach algebra with the identity elemente = (1,0) and 6 = (0,0);



ON THE SOLUTIONS OF A CLASS OF NONLINEAR INTEGRAL EQUATIONS IN CONE b-METRIC SPACES ... 171

(2) forallx = (x1,x2), y = (y1,y2) € A, x = yifand only if x; > y; and x > yp;
(3) (X, A,d,s) is a complete cone b-metric space over Banach algebra with s = 2;
(4) there does not existk € A with p(k) < 1 such that the condition (12) holds;

(5) all assumptions of Lemma 6 hold.

Proof. (1). See [11, Theorem 3.1].

(2). Since P = {(x,y) € A : x,y > 0}, forany x = (x1,x), v = (y1,¥y2) € A4,
we have x > y if and only if (x1 — y1,x2 — y2) € P. Itis equivalent to x; > y1 and xp > y».

(3). Forany x,y,z € X = [0,00) we have

e d(x,y) = (Jx—y[%0) = (0,0). Sod(x,y) = 6, and d(x,y) = 0 if and only if x = y;

o d(x,y) = (Ix —y/%0) = (ly — x2,0) = d(y, x).
Since |x —z[? < 2(|x —y|* + |y — z|*), we have (|x —z|?,0) < 2[(|x —y[>,0) + (ly — z[%,0)].
It implies that
d(x,z) 2 2(d(x,y) +d(y,z)).

By the above, d is a cone b-metric on X with s = 2.
Now for any Cauchy sequence {x,} in X and for each ¢ = (c1,¢2) € intP there exists
mgy € IN such that for all n, m > my we have

d(xn, Xm) = (|xn — xm|%,0) < (c1,02) = c.

This implies that for each ¢; > 0, we have |x, — x| < (cl)% for all n,m > myp. It implies
that {x,} is a Cauchy sequence in R. So there exists x € R such that nh_r)r;o |x, — x| = 0.
Since x, € X = R4 for all n and x;, — x in R, we have x € X. This implies that for each
¢ = (c1,¢2) € intP, there exists my € IN such that for all n > mg we have |x, — x| < (cl)%.
Therefore, we get that for all n > my

d(xn, x) = (Jxn — x]z,O) < (c1,02) =c.

This proves that {x, } convergent to x in (X, A,d,s). So (X, A,d,s) is complete.
By the above, (X, A,d,s) is a complete cone b-metric space over Banach algebra with s = 2.
(4). Firstly, we observe that for k = (ky,k2) € P, by induction we have

K' = (ky, k)" = (K}, nkok ™).
It implies that
1
o(k) = inf |[K"||% = inf (|K}| + |nkaki~[) .
Then, if p(k) < 1, by (13), we get that k; < 1.
On the contrary, suppose that there exists k = (k1,k2) € P with p(k) < 1 such that

d(f(x), f(y)) < kd(x,y)
forall x,y € X. Then forall x,y € X,

(13)

2 o) =< (ky, k2) (Jx — y[2,0).

()xil_#
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For x # 0 and y = 0 we have

<‘x-j—1 2’0) = (k1 k2) (|22, 0).

It is equivalent to

x 12
(20) = el
This implies that
|x[? 2
Gt = kil
Hence for all x # 0, we have
1

Letting x — 07 in (14) we get 1 < k;. This contradicts to the above observation.
(5). ® Forany z = (z1,22),t = (f1,t2) € Pwithz < ¢, thatis, 0 < z; < tjand 0 < zp < t,.

Then we have
21 tl
< .
zZ1 + 1= t1 + 1

o) = (722,0) < (+2,0) = g(t).

21 —+ 1’ tl —+ 1,
So, forall z, t € P with z < t, we have ¢(z) < ¢(t).

e Now for any z = (z1,22) € P we have by induction that ¢"(z) = <nz?+1,0>. It follows
that

It implies that

Z1 . Z1
< = U.
(0,0) = <nzl+1'0) and nlglgonzl%—l 0

This implies that
6 < ¢"(z) and nlgrolo ¢"(z) =6.

Therefore, for each ¢ = (c1,¢2) € intP, by Lemma 4.(5) there exists my € IN such that for all
n > my we have

Z1
/O) 7 = C.
<1’l21 +1 < (Cl Cz) C

This implies that {¢"(z) } is a c-sequence in P.
e Suppose that {z,} = {(z&"),zén))} is a c-sequence in P, then for each ¢ = (¢, ¢2) € intP,

there exists kg € IN such that for all n > kg we have (zgn), zén)) < (c1,¢2) = c. This implies that

a0

@(zn) = (

O ,0) = (z&”),zg”)) < (c1,¢2) = ¢, forall n > k.
z; 7 +1
Therefore, {¢(z,)} is also a c-sequence in P.

Hence ¢ is a weak comparison.

Next, for any x,y € X, we have

2 _ 2
0 (5t

)
ﬁ)§<5@3%£7m)

2,0) = (\ﬁ
Q x —y[?
[x —y[?+2x—y|+1

()xil_# (15)
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2’ O)

Note that

500,10 () = (e 5

and

Y — 2
od(x,) = (A 0).

So from (15) we find that d(f(x), f(y)) = ¢(d(x,y)) for all x,y € X, and f is a generalized

weak ¢-contraction.
By the above, all assumptions of Lemma 6 hold. O

3 APPLICATIONS TO THE NONLINEAR INTEGRAL EQUATIONS

In this section, we apply Lemma 6 to study the existence and uniqueness of the solution to
the nonlinear integral equations.

Lemma 7. Let C[a, b] be the set of all continuous functions on |a, b], wherea, b € R. Let A = R?
and P = {(x,y) € A: x,y > 0} with the same norm, the same multiplication, and the same
partial order on A as stated in Example 2. Define d : Cla,b] x C[a, b] — A by

d(x,y) = (sup [x(t) = y(B)P, sup |x(t) - y(t)?)
te(a,b] te(a,b]

for all x,y € Cla,b]. Then (C [a,b], A, d,s) is a complete cone b-metric space over Banach
algebra with s = 2.

Proof. For any x,y,z € Cla, b] we have
d(x,y) = ( sup [x(t) = y(B), sup [x(t) = y(t)*) > (0,0). Sod(x,y) = 6.

te(a,b] t€(a,b)
d(x,y) = 6 if and only if sup |x(t) — y(t)|*> = 0if and only if x(t) = y(t) forall t € [a,b],
tela,b
thatis, x = y. o
Since sup |x(t) —y(t)|> = sup |y(t) — x(t)|* forall t € [a,b], we get that d(x,y) = d(y, x).
tela,b] te(a,b]
We have

x() = 2(8) < 2(Jx(t) = y(OP +|y(t) — 2(1) ) forall ¢ € [a,].

It implies that

sup |x(t) —z(£)]* < 2( sup |x(t) — y(t)|* + sup |y(t) — z(t)\2> forall t € [a,b].
te(a,b) t€(a,b) t€(a,b)
That is,
d(x,z) 22(d(x,y) +d(y,z)).

By the above, d is a cone b-metric on X with s = 2.
Now for any Cauchy sequence {x,} in (C [a,b], A, d,s) and for each ¢ = (cq,¢3) € intP,
there exists my € IN such that for all n, m > my we have

d(xn, xm) = ( sup |xu(t) — xm(t)[?, sup [xa(t) — xm(t)*) < (c1,02) =c. (16)
tela,b] te(a,b]
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This implies that

sup |xn(t) — xpm(t)| < V/ci, i =1,2, forall n,m > my. (17)
te(a,b]

So {x,} is a Cauchy sequence in C[a,b]. Since C[a,b] with the sup-norm is complete, there
exists x € C[a, b] such that nh_r}n X, = x. Hence by (17) we have

sup |xn(t) —x(t)| < /c;, i=1,2, foralln > my.
tela,b]

This implies by (16) that

d(xp, x) = < sup |x,(t) — x(t)%, sup |x,(t) — x(t)|2> < (c1,¢62) = ¢, forall n > my.
te[glb} te[a,b]

This proves that {x, } converges to x in (C[a,b], A, d,s). So (C[a,b], A, d,s) is complete.
By the above, (C[a, b], A, d, s) is a complete cone b-metric space over Banach algebra with

s =2. O]

Theorem 2. Let (C [a,b], A, d,s) be a complete cone b-metric space over Banach algebra in
Lemma 7. Consider a integral equation

b
x(t) = n(t) —i—/ﬂ K(t, x(r))dr, te[ab], (18)

where x € Cla,b], n € Cla,b] and K : [a,b] x R — R. Assume that the following hypotheses
hold:

1) foreacht € [a,b], K(t,x(r)) is integrable with respect tor on [a, b];

b
2) there exists a continuous function y : [a,b] x [a,b] — R with sup / |[(t,7)|dr <1and
telab] V4
there exists a comparison function 7y such that for all t,r € [a,b] and all x,y € Cla,b],

(K (& x(r) = K(Ly ()| < [, 0)]r(1x(r) = y()]).

Then the integral equation (18) has a unique solution u € C|a, b].

Proof. Let f : Ca,b] — CJa, b] be a map defined by

(f(x)) () = 5(t) +/abK(t,x(r))dr, x € Cla,b], t € [a,b].
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For any x,y € C[a, b], we have

- (g[lr; () ()= (F) O, sup (7)) = (7(0) ®I°)

— (tz[ > { (t,x(r)) —K(t,y(r))}dr 2,:{1}2} Hb [K(t,x(r)) —K(t,y(r))]drr)

< (tz[ P { K(t, x(r)) —K(t ’dr} ,;112][ ’ (t,x(r)) —K(t,y(r))‘drr)

< <ti[gb / lp(t,r)|v(|x(r) ,;1;11:; / [ (t, )|y (|x(r) —y(r)|)d r]2>
§<t§[ﬁ / [t )l ( sup [x(r) ~y(7) 't?ﬁ] / [yt )] ( sup [¥(0) y(r)|)df]2)

< E&” ymmf%ﬁym—wm)
(

= ”Zwi‘@% x(r) y<r>|2),72(%iﬁ]|x<r> —y(nP))
= ¢( sup [+(r) ~y(r)f"), sup Ix() —ynP)) = p(d(xy)),

where ¢ : P — P defined by ¢(z) = ¢(z1,22) = <’)/2(\/271),'yz(\/5)) forall z = (zq,2p) € P.
Now we prove that ¢(z) is a weak comparison.

e Forany z = (z1,2z2), t = (t1,t2) € P with z < t. Then we have 0 < z; < #; and
0 < zp < 1. It follows that

0 < 7(va) < 7(vA) and 0 < 1(vE) < 7(VE).

This implies that
Y (y/z1) < Y*(VH) and 12(v2Z2) < A(Vh).

Therefore, we get

So, forall z, t € P with z < t, we have ¢(z) < ¢(t).
e Sincez = (z1,2) € P and 7y is the comparison function, we have

(0,0) < (v"(vZ1),7"(vZ2)) and lim 7*(V1) = lim 7%(vZ2) = 0.

n—oo n—oo

This implies that
6 < ¢"(z) and nh_r>n " (z) =6.

Therefore, for each ¢ = (c1,¢2) € intP, by Lemma 4.(5) there exists my € IN such that for all
n > my we have

¢"(z) < (c1,62) =¢
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This prove that {¢"(z)} is a c-sequence in P.
e Suppose that {z,,} = {(zgn),zén))} is a c-sequence in P, then for each ¢ = (c1,¢2) € intP,
there exists [y € IN such that for all n > [j we have (Zgn), zgn)) < (c1,¢2). Since 7y is a compari-

son function, we find that
pzn) = o(=".2") = (P(/A"). P (VA)

< (1A A) = (VA V) < (vave).

This implies that {¢(z,)} is also a c-sequence in P. Hence ¢ is a weak comparison.
Thus, all the conditions of Lemma 6 hold, and hence the integral equation (18) has a unique
solution u € Cla, b]. O

The following example guarantees the existence of the function K, 1, v and 7 that satisfies
all assumptions in Theorem 2.

Example 3. Let C|0, 1] be the set of all continuous functions on [0,1]. Consider the nonlinear
integral equation

1
x(t) =t— <§ —l—ln%).sint%— /r.sint.ln (1+ 1]x(r)])dr, t €10,1]. (19)
4 9 / 2
Put
n(t)=t— <Z —|—ln¥).sint, Y(t,r) =r.sint forall t,r € [0,1],

and 1

K(t,x(r)) = r.sint.In (1+ §|x(r)|) forall x € C[0,1] andallt,r € [0,1].
Then

(1) n € C[0,1] and K(t, x(r)) is integrable with respect tor on [0,1];

1

(2) ¢(t,r) is continuous on [0,1] x [0,1] and sup [ | ¢(t,r) |dr <1;
t€[0,1] 0

(3) puty(u) =In(1+ Ju) forallu € R, we have vy is a comparison function;

(4) forallt,r € [0,1] and x,y € C[0,1], we have
K(tx() = K(t,y(0)| < [9e.0)|r(1x() = y(0).

Proof. (1). Since y(t) = t — <43I +In #).sint for all t € [0,1], we have 5 € CJ0,1]. Since
x € C[0,1], we have K(t,x(r)) = r.sint.In (1 + 3|x(r)|) is integrable with respect to  on [0, 1].
1

(2). Tt is easy to see that ¢ (¢, r) is continuous on [0,1] x [0,1] and sup [ | ¢(¢t,7) | dr < 1.
te[0,1] 0

(3). For all u1,uy € Ry and uy < up, we have (1) = In(1 + %ul) <In(1+ %uz) = v(up).
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For any u € R, we have

and

V() =v(y(w) =In(1+ %m(l + %u)) <

Continuing the above process we obtain that for all n,

From the above, we have v is increasing and lgn Y*(u) = 0.
n—oo
(4). Now let x,y € C|0,1]. Then, for each 7, t € [0,1], we have

|K(t,x(r) —K(ty(r) | = )r.sint.ln(1+%|x(r)|)—r.sint.ln(1+%|y(r)|))
= |r.sint|.|In (1+%|x(1’)|) —In (1+%|y(1’)|)‘

= |r.sint|.|In

= |r.sint|.|In

< |r.sint|.|In

< Jr.sint|.|In(1+ %}x(r) —y r)}) ‘
= [ptr)]x([x(r) = y(r)])
From the above, K, ¢, v and 7 satisfy all assumptions of Theorem 2. Hence the integral
equation (19) has a unique solution u € C[0, 1]. O
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Y AaHiit pob0Ti MM BUBUAEMO iCHYBaHHSI pO3B’I3KiB A€SKOTO KAACy PyHKITIOHAABHMX iHTEIPaAb-
HUX PiBHSHD 3 BUKOPUCTAHHSIM A@SIKMX Pe3yAbTaTiB ITPo piKcoBaHy TOUKY Y KOHIUHIMX b-MeTpUUIHMX
IIpocTOpax Haa 6aHaxoBMMM aATebpamMit. AASI OTPMMAaHHS IVIX Pe3yAbTaTiB MM BBEAU i AOBEAM AeSIKi
BAACTVBOCT] y3araAbHEHMX CAAOKMX @-CKOPOUEHbD, B SKMX ¢ € HeAIHIMHMMM cAabKymMm pyHKIIiIMM
nopiBHsIHHS. OTpyMaHi pe3yAbTaTH € y3ararbHeHHsIMI pe3yabTaTiB Van Dung N., Le Hang V. T,,
Huang H., Radenovic S. i Deng G. TakoX, HaBeAeHO AesIKi BIATTOBiAHI IPMKAAAM AAS iAfocTpamii
OTPUMAHMX Pe3yAbTaTiB.

Kntouosi croea i ppasu: KOHIUHMIA b-MeTPpUUHMIA IIPOCTip HaA 6aHAXOBOIO aATeb6pOI0, P-CKOPOUEH-
HsI, C-TIOCAIAOBHICTD, HEpyXOMa TOUKa, iHTerpasbHe PiBHSIHHSL.



