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CLASSIFICATION OF GENERALIZED TERNARY QUADRATIC QUASIGROUP
FUNCTIONAL EQUATIONS OF THE LENGTH THREE

A functional equation is called: generalized if all functional variables are pairwise different;
ternary if all its functional variables are ternary; quadratic if each individual variable has exactly
two appearances; quasigroup if its solutions are studied only on invertible functions. A length of a
functional equation is the number of all its functional variables. A complete classification up to
parastrophically primary equivalence of generalized quadratic quasigroup functional equations of
the length three is given. Solution sets of a full family of representatives of the equivalence are
found.
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INTRODUCTION

We study functional equations which can be considered on an arbitrary set (a carrier) and
therefore they have neither individual nor functional constants. Moreover, we focus our at-
tention only on the solutions which are sequences of invertible functions (i.e., quasigroup
functions) and such equations are called quasigroup equations. We do not pay attention to
dependencies among functional variables. That is why, we consider generalized equations: all
functional variables are pairwise different. The word ‘ternary” means that every functional
variable takes its value in the set A3 of all ternary invertible operations defined on a carrier.

Every ternary invertible operation has three inverses: left, middle and right divisions and
each of them is also invertible, etc. These operations are called parastrophes. Generally speak-
ing, an arbitrary ternary invertible operation has 4! = 24 parastrophes including itself and all
of them are connected by some defining identities. These identities are true not only for all
individual variables but for all functional variables provided they take their value in Az. In
other words, they are hyperidentities over the set A3, and they are called primary. Renaming
functional and individual variables and applying primary hyperidentities, one can transform
one functional equation into some other equation. This relation between functional equations
is an equivalence and is called a parastrophically primary equivalence. If two functional equa-
tions are parastrophically primarily equivalent, then there is an algorithm which transforms
the solution set of the first equation into the solution set of the second one.
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The problem under consideration is “Describe parastrophically primary equivalence on the set
of all quasigroup functional equations, select all representatives (i.e., a maximal set of non-equivalent
functional equations) and solve all of them”.

This problem is discussed in A. Krapez [3], S. Krsti¢ [15], A. KrapeZ and D. Zivkovi¢ [4],
A. Ehsani, A. KrapeZ and Y. Movsisyan [5], F. Sokhatsky [8, 10], F. Sokhatsky and H. Kraini-
chuk [6,9], R. Koval’ [14], H. Krainichuk [13] etc. for binary quasigroups. On ternary quasi-
groups, the parastrophically primary classification was carried out in the article [11], where
a two-element transversal equivalence of the generalized non-trivial functional equations of
the length one and the seven-element transversal of the equivalence of generalized non-trivial
functional equations of the length two were singled out.

In this article, only quadratic generalized functional equations of the length three on invert-
ible functions (i.e. quasigroup operations) are studied, that is, those equations in which each
individual variable has exactly two appearances. If a quasigroup equation has one appearance
of an individual variable, then it is trivial, i.e. it has solutions only on singletons.

In section ‘Quasigroup solutions’, general solutions of each element from a family of pair-
wise parastrophically primarily non-equivalent generalized quadratic functional equations of
the length three on ternary quasigroups have been found in Theorems 2-5. In the next section
‘Proof of Theorem 1, a full proof of the classification theorem is given.

1 PRELIMINARIES

1.1 Quasigroup

All operations considered in this article are defined on an arbitrary fixed set Q called a
carrier. A binary operation is a mapping g: Q> — Q, the set of all operations defined on Q
is denoted by ;. A binary operation g is called invertible, if it is invertible in both monoids
(Os; ElB, e1) and (Oy; %9, ez), where e1(x1, x2) := x1, e2(x1, x2) := x and

(g @1981)(9511952) = g(g1(x1,x2), x2), (8 @29g1)(x1/x2) = g(x1,81(x1, %2)).

The operation g is the main one and its inverses in (O2; @, e1) and (Oy; @, e,) are denoted by ‘g
1 2

and 'g and are called ¢’s left and right divisions respectively. If an operation g is invertible, then
the algebra (Q;g,‘,’g) is called a binary quasigroup [10]. Usually, infix notations are used for

L
binary operations. Therefore, an algebra (Q; o, o, O) is called a quasigroup if the identities

(xoy)oy=x (xoy)oy=x xo(xéy)=y, xé(xoy)=y
hold.

Similarly, a ternary operation is a mapping f: Q% — Q, the set of all ternary operations
defined on Q is denoted by O3. A ternary operation f is called invertible if it is invertible in
each of the monoids (Os; @, ¢;), i = 1,2,3, where

1
) == f(fi(x1,x2,x3), %2, x3),
) = f(x, fi(x, X2, x3), X3),
) f(xlleIfl (xll X2, JC3))
)=

x, i=1,23.
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The operation f is the main one and its inverses in (Os; ®,e1), (Os; B, e2), (O3; B, e3) are de-
1 2 3

noted by (14)f, (24)f, (34)f and they are called f’s left, middle and right divisions respectively. In
other words, the operation f is invertible if the identities

F(Wf(xy,2),y,2) = x, (1) W (f(x,y,2),y,2) =x, (4)
flx, @f(x,y,2),2) =y, ) @f(x, f(x,,2),2) =, (5)
flxy, BV (x,y,2)) =2, (3) GV (x,y, f(x,y,2)) =z (6)

hold. If an operation f is invertible, then the algebra (Q; f, 14)f, @4f, BYf) (in brief, (Q; f)) is
called a ternary quasigroup [10]. It is easy to verify that all divisions of an invertible operation
are also invertible and so are their divisions.

A o-parastrophe of an invertible operation f is called an operation ’f defined by

7f(X10, X20, X30) = Xag & f(X1,X2,X3) = X4, O € Sy,

where S4 denotes the group of all bijections of the set {1,2,3,4}. Therefore in general, every
invertible operation has 24 parastrophes. Some of them can coincide. If all parastrophes coin-
cide, the quasigroup is called totally symmetric. Since parastrophes of a quasigroup satisfy the
equalities

TH=7F and =], )

then the symmetric group S4 defines an action on the set Az of all ternary invertible operations
defined on the same carrier. In particular, the fact implies that the number of different paras-
trophes of an invertible operation is a factor of 24. More precisely, it is equal to 24/|Ps(f)],
where Ps(f) denotes a stabilizer group of f under this action which is called parastrophic sym-
metry group of the operation f. Consequently, a totally symmetric quasigroup is a quasigroup
whose parastrophic symmetry group is S4. If the parastrophic symmetry group of a ternary
quasigroup is trivial, then the quasigroup has 24 different parastrophes and it is called asym-
metric.
An element e of (Q; f) is called neutral if for all x from Q the equalities

f(x,ee) =x, fle,x,e) =x, fle,e,x) =x

hold. In contrast to the binary case, a neutral element is not necessarily unique in a ternary
quasigroup. A quasigroup is called a loop if it has a neutral element. For example, let (Q; +)
be a group of the exponent two and an operation f be defined by

f(x,y,z) =x+y+z.

It is easy to see that every element of the quasigroup is neutral in the ternary quasigroup
(Q; f). Such a quasigroup will be called universally neutral. Namely, a ternary quasigroup
(Q; f) will be called a left, middle, right universally neutral if the respective identity holds:

foyy)=x, flyxy)=x  flyyx) =

It will be called universally neutral if all three identities take place. Note, that the given exam-
ple of the ternary quasigroup is not only universally neutral, but it is totally symmetric. A
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quasigroup which is both universally neutral and totally symmetric is called a Steiner quasi-
group [2,12]. Thus, every ternary Steiner quasigroup is a loop. Moreover, each of its elements
is neutral.

An invertible operation f is called repetition-free decomposable if there exist two binary in-
vertible operations g, i and bijection ¢ € S3 such that

f(xll X2, x3) — g(h(xlo'/ x20’)r x3(7)'
Theorem 1 from [16] implies the following result.

Corollary 1. If a ternary Steiner quasigroup (Q; f) is repetition-free decomposable, then there
is a group (Q; +) of the exponent two such that

flx,y,z) =x+y+z.
1.2 Functional equations

Throughout the article, we will use the notion ‘functional equation” in the following sense.
Let T; and T are second order terms which have only individual and functional variables. A
formula T; = T is called a functional equation, if it is universally quantified on all individual
variables and has at least one free functional variable. Moreover, we consider only generalized
ternary quadratic functional equations of the length three on quasigroups, where the notion
‘ternary quasigroup equation’ means that all functional variables take their values only in
the set of ternary invertible functions; the word ‘generalized” means that the variables are
pairwise different; the word ‘quadratic’ means that every individual variable has exactly two
appearances or none; the notion ‘length of a functional equation’ is the number of functional
variables including their repetitions (see [1,10]).

A subterm of an equation is a subterm of its left or right sides. A subterm of a term T is
called proper if it coincides neither with T nor an individual variable. Let F(t1, f5, t3) be a term,
then the function variable F is called main.

Let T} = T be a ternary functional equation of the length three, (F, G, G]-) be the lexi-
cographical sequence of its functional variables, i.e., i < j. A sequence (f,g, h) of invertible
ternary functions defined on a set Q is called a solution of Ty = T, if substituting f for F, g for
G1 and h for G,, we obtain a true proposition t; = tp, i.e., t; = t is an identity. A quasigroup
functional equation is called trivial if it has a solution only on a singleton.

Consequently, in an arbitrary non-trivial quasigroup functional equation, every individual
variable has at least two appearances. In this article, we consider the case when every individ-
ual variable has exactly two appearances, these equations are called quadratic.

Let A3 be the set of all invertible ternary functions defined on a carrier Q. The relationships
(1)-(6) and (7) are true for all functions from Ajz. In other words, the following hyperidentities
are true over the set Aj:

("F)=Y""F, 'F=F, U9F(F(x,y,2),y,2) = x;
(24)F(x,F(x,y,z),z) =y; (34)F(x,y,F(x,y,z)) =z, (8)
F(x1,x2,x3) = F(X14, X20, X3¢), O € S3.

The hyperidentities are called primary.
Two quasigroup functional equations are called: equivalent over a set Q if they have the same
solution set over the carrier; equivalent if they are equivalent over each set.
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Definition 1 ([8]). Two functional equations are called parastrophically primarily equivalent
if one can be obtained from the other in a finite number of the following steps: 1) replacing
of the equation sides; 2) renaming of the functional variables; 3) renaming of the individual
variables; 4) applying the hyperidentities (8).

A lexicographical renaming of individual variables is renaming all first appearances of these
variables according to their lexicographical order.

Lemma 1. Let v = w and v/ = «’ be generalized ternary functional equations of the length
three. If they are parastrophically primarily equivalent, then there exists a bijection T in S3 and
bijections 01, 03, 03 in Sy such that for an arbitrary solution (f1, f2, f3) of v = w the sequence

(Ulfl"r’ UZfZT' U3f3r)

is a solution of the equation v’ = «'.

In this case, (T, 01, 02, 03) is called a defining bijection system of the equations v = w and v’ =
w’. This lemma implies a sufficient condition for parastrophically primary non-equivalence of
ternary generalized functional equations of the length three. Namely, the following statement
is valid.

Corollary 2. If for every bijection T in S3 and bijections 01, 02, 03 in Sy there exists a solution
(f1, f2, f3) of v = w such that ("\f |, f,., ®f ) is not a solution of v' = «’, then the functional
equations v = w and v’ = w’ are not parastrophically primarily equivalent.

A function f is called a solution of a functional equation if the sequence (f,f,...,f) is
solution of the equation.

Corollary 3. If a totally symmetric function is a solution of a functional equation but it is not a
solution of another functional equation, then the equations are not parastrophically primarily
equivalent.

2  QUASIGROUP SOLUTIONS

Theorem 1 gives a full classification of generalized quadratic ternary quasigroup functional
equations of the length three up to parastrophically primary equivalence. Also, all quasigroup
solutions of all representatives (9)-(12) of the classification are proved in Theorem 2-5.

Theorem 1. Every generalized quadratic ternary quasigroup functional equation of the length
three is parastrophically primarily equivalent to exactly one of the following equations:

Fi(z,x, B(x,y,y)) = F3(z,u,u), ©)
Fi(F(x,y,v),z,z) = F3(x, u,u), (10)
Fi(F(x,y,z),u,u) = F3(x,y,2), (11)
Fi(F(x,y,z),x,u) = F3(y,z,u). (12)

Lemma 2. Letw, f be the unary and ternary invertible operations respectively. Then the equal-
ity
f(xyy) = ax (13)

is equivalent to the existence of a left-universally neutral invertible operation g such that

fxy,2) = glax,y, z). (14)
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Proof. Define operation g, by

g(x,y,2) = fla"x,y,2). (15)

Since f is invertible and g is an isotope of f, the operation g is invertible. Taking into account
(13), we have x = f(a~'x,y,y) = g(x,y,y). Hence, the operation g is left-universally neutral.
Applying (15), we obtain (14).

Conversely, let g be a left-universally neutral invertible operation and let the relationship
(14) holds. Then f(x,y,y) = g(ax,y,y) = ax. O

Theorem 2. A triplet (f1, f2, f3) of ternary invertible operations is a solution of the equation (9)
if and only if there exist left-universally neutral invertible operations hy, hy, h3 and bijections
«, B such that

filx,y,z) = hi(ax,y, p12), (16)
fa(x,y,2) = ha(Bx,y,2), (17)
f3(x,y,2) = ha(ax, y, 2). (18)

Proof. Let a triplet (f1, f2, f3) of ternary invertible operations defined on Q be a solution of the
equation (9), i.e., for all x, y, z, u the identity

fi(zx, f2(x,4,y)) = f3(z,u,u) (19)
holds. In particular, if u = a € Q, we have
iz x fo(xyy) = az, (20)

where az:= f3(z,4a,a) is a bijection of Q because « is a left translation of the invertible operation
f3.

Also, from (20) and (19), we get the identity f3(z, 1, u) = az. According to Lemma 2, there
exists a left-universally neutral invertible operation /i3 such that (18) holds.

Applying the definition of a parastrophe to the equality (20), we have

f(xy,y) = OYfi(z, 1, az).

Ifz=a € Qand Bx :=% f(a, x, xa), the equality is written as f»(x, y,y) = Bx. Note that § is
bijective on Q since it is a translation of an invertible operation 3f;. By Lemma 2, the latter
relationship implies the existence of a left-universally neutral invertible operation h; such that
(17) is true.

Replace f»(x,y,y) with Bx in (20): f1(z,x, Bx) = az. Let hy(x,y,z) := fi(a"1x,y, Bz), then
(16) holds and h1(x,y,y) = fi(a"'z,x,Bx) = aa~'x = x. Thus the operation h; is a left-
universally neutral invertible.

Conversely, let the operations h, hy, h3 be left-universally neutral invertible operations and
operations f1, f2, f3 be defined by (16), (17), (18) for some bijections «, B of a set Q. Then

filz x, o(x,yy) = n(az,x, B ha (B, y, y)
=y (az,x, B Bx) = hi(az,x,x) = az
= h3(az,u,u) = f3(z,u,u).

Therefore, the triplet (f1, f2, f3) is a solution of the equation (9). O
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Theorem 3. A triplet of ternary invertible operations (f1, f2, f3) is a solution of the equation (10)
if and only if there exist left-universally neutral invertible operations g1, g2, g3 and bijections
7, 6 such that

fl(x,y,z) =41 (’)/x,y,z), (21)
f(x,y,2z) = §2(0%,y,2), (22)
f3(x,y,2) = g3(vdx, Y, 2). (23)

Proof. Let a triplet (fi, fa, f3) of ternary invertible operations is a solution of the equation (10),
i.e., the identity

A%y y),22) = fa(x,u,u) (24)

holds. In particular, if y = u = a € Q, we have fi(f2(x,y,y),a,a) = fz(x,a,a). Then
afr(x,y,y) = Bx, where ax := f1(x,a,a) and Bx := f3(x,a,a) are bijective since « and B are
translations of the invertible operations f; and f3 respectively. Therefrom

fH(xyy) =a B

Defining 6 := a~!B, we have fo(x,y,y) = 6x. According to Lemma 2, there exists a left-
universally neutral invertible operation g, such that the equality (22) holds.
Let us substitute dx in (24) for fo(x,y,y):

f1(6x,2,2) = f3(x,u,u).

Replace x with 6 ~1x in the equality: f1(x,z,z) = f3(6~'x,u,u) forall x, z, u. In particular, when
u=ac Q,wehave fi(x,z,z) = yx, where yx:= f3(6"'x,a,a) is a bijection of the carrier Q,
because v is the left translation of the invertible operation f3. Therefore, the relationship (21)
holds for some left-universally neutral operation g1. Applying (21) and (22) to (24), we have

Yox = fa(x,u,u).

According to Lemma 2, there exists a left-universally neutral invertible operation g3 such that
the equality (23) holds.

Vise versa, let the relationships (21), (22), (23) be true for some left-universally neutral op-
erations g1, g2, g3 and bijections 7, J, then

filh(xv,v),22) =81(1800x,y,y) 2 2)
= ¢1(y0x,z,z) = vox = g3(yox,u,u) = f3(x,u,u).
Thus, the triplet (f1, f2, f3) is a solution of the equation (10). O

Theorem 4. A triplet (f1, fa, f3) of ternary operations defined on a set Q is a quasigroup solu-
tion of the functional equation (11) if and only if the operation f, is invertible and there exists
a bijection y and a left-universally neutral operation g such that

fs(x,y,2) =uha(x,y,2),  flxyz)=g8uxy,z). (25)
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Proof. Let a triplet (f1, f2, f3) of ternary invertible operations be a solution of the equation (11),
i.e., for all x, y, z, u the identity

(% y,2),u,u) = f3(x,y,2) (26)

holds. In particular, when u = a € Q and ux:= f1(x,a,a), we have the first identity from (25).
Substituting y f, in (26) for f3, we have

flfa(x,y,2),u,u) = pfr(x,y, z).

Replacing f>(x,y,z) with x, we obtain fi(x,u,u) = px. According to Lemma 2, there exists
a bijection y and a left-universally neutral operation g such that the second relationship from
(25) holds.

Conversely, let f, be invertible ternary operation and there exists a bijection # and a left-
universally neutral operation g such that the relationships (25) hold. Then

A%y 2),uu) = g(ufa(x,y,2),u,u) = 8(f3(x,y,2),u,u) = f3(x,y,2).
Therefore, the triplet (f1, f2, f3) is a quasigroup solution of the equation (11). O

Theorem 5. A triplet (f1, f2, f3) of ternary invertible operations defined on set Q is a solution
of the functional equation (12) if and only if there exist binary invertible operations o, *, ¢ on
Q such that

fily,x,u) = (xoy) *u,
fz(x’ylz> = x<r>(yoz), (27)
f3(y,z,u) = (yoz)*u.

Proof. Let a triplet (f1, f2, f3) of ternary invertible operations is a solution of the equation (12),
ie, forall x,y,z,u € Q the identity:

hlf(xy2),x,u) = f3(y,2,u) (28)
holds. In particular, when x = 2 € Q and
yoz:= fo(a,y,z), txu:= f1(t,a,u),

we have (yoz) *u = f3(y,z,u). Hence, we obtain the third relationship from (27). Note that
(o) and (*) are invertible operations since they are retracts of ternary invertible operations f,
and fi. Applying the latter equality to (28), we get

hf(xy,2),x,u) = (yoz) *u. (29)
Replace y with ¥)f,(x,y,2):
filf2(x, B (x,y,2),2), 0,u) = (Pfp(x,,2) 0 2) %

Apply (2):
fly,x,u) = ((24)f2(X,]/,Z) 0z) * L.
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Replacing z with a and denoting x o y := (¥, (x, y,a) o a, we obtain the first relationship from
(27). Then (29) can be written as

(xo folx,y,2)) *u= (yoz)*u.

Since the operation (x) is invertible, then

xo fo(x,y,z) =yoz.

Since the operation (¢) is invertible, we can use the definition of the right division for binary
operations. As a result, we obtain the second equality from (27).

Conversely, let o, *, ¢ be invertible binary operations on Q. Then the ternary operations
defined by the relationship (27) are invertible since they are repetition-free superpositions of
binary invertible operations.

Ay z),xu) = (xo fa(x,y,z)) xu
= (xo(x6(yoz)))xu= (yoz)xu= f3(y,zu).

Hence, for all x, y, z, u (28) holds. Therefore, the triplet (f1, f2, f3) is a solution of (12). O

3 PROOF OF THEOREM 1

Proof. Let v = w be a generalized quadratic ternary quasigroup functional equation of the
length three. Changing its sides if necessary, we obtain an equation which has one of the
following forms:

DEC.LE(.) ) =F(.), i) F( B B =1
i) F( o Fi( ), Bl ),) = 8

where t is an individual variable and (...) denotes some sequence of variables or an empty
sequence.

When the equation has the form ii) we substitute both sides of the equation for ' in the
term F;(...,t,...). As aresult, we obtain

Foeo o Fieo s F( Bl )y ) ) ) = Fieo ot ),

where “F; is a suitable division of F;, i.e., c'is (14), (24) or (34). Applying the respective primary
identity (1)—(6), we get

Fooo Fe(on) ) = Bl t,.).

Therefore, every functional equation of the form ii) is parastrophically primarily equivalent to
an equation of the form 7).

If the functional equation has the form iii), we substitute both sides of the equation for v in
the term "F;(..., F(...),...,0,...):
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where 7F; is a suitable division of F;. Applying one of the primary identities (1)-(6), we have

Fl(ooFi( )t ) = Bl )

Thus, every functional equation is parastrophically primarily equivalent to a functional equa-
tion of the form 7).

Let a functional equation have the form 7). Applying a suitable transformation to a paras-
trophe, we obtain an equation of the form

E(oo Fi()) = Rel..).

Renaming its functional and individual variables in lexicographical order, we obtain

Fi(Fy(x,ty,t3),ta, t5) = F3(te, t7,t3), (30)

where t; € {x,y,z,u}. Denote a lexicographical order of individual variables by <. If t, =
t3, we replace the subterm F,(x, tp, t3) with the subterm (23)F2(x, t3, t), mutually rename the
individual variables t, and t3 and rename (23)132 by F,. As a result, we obtain the functional
equation of the form (30) in which t; < t3.

Analogically, we suppose that t4 < t5 and tg < t7 < tg. At last, we can put in order the
second appearances of x, t, t3. Namely, we rename them in a lexicographical order, then we
transform them to the corresponding parastrophe of F,. The same transformation holds for
the pair ty, ts.

Thus, we have proved that every quadratic functional equation is parastrophically primar-
ily equivalent to the equation (30) in which: 1) the first appearances of individual variables
have a lexicographical order; 2) t, < t3, t4 < t5 and tg < t7 < tg; 3) the second appearances of
x, tp, t3 as well as the second appearances of 4, t5 are in the lexicographical order.

Hence, the proper subterm is

1) F(x,x,y) or 2)F(xy,z).

The case F,(x,y,y) is impossible because the second appearances of x and y should be in a
lexicographical order.

Let the proper subterm be F(x, x,y). If y € {t4,t5}, then t4 is y and t5 is z thus, we have the
equation

Fi(F(x,x,y),y,z) = F3(z,u,u).
Transform F; and F, to (13)-parastrophes of F; and F, in the equation. We obtain
(3, (y,z, B (y, x, x)) = F3(z, u,u).

Mutually renaming x and y and renaming the functional variables in a lexicographical order,
we obtain the functional equation (9).

If y & {t4, t5}, then there are two possibilities for the pair (¢4, t5): (z,z) and (z, u). Therefore,
we have two equations:

Fi(F(x,x,y),2z,z) = F3(y, u, u), (31)
Fl(Fz(x,x,y),z,u) = Fg(y,Z,I/l). (32)
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The equation (31) is parastrophically primarily equivalent to (10) by means of transforming to
(13)-parastrophe of F,, by mutually renaming x and y and replacing (1®)F, with F,.
Apply the hyperidentity (4) to (32):

WDE (B3(y, z,u),2,u) = By (x, x,y),
then apply the hyperidentity (3):
F(x, x, (34)F3(y, zZ,U)) = (14)131 (y,z,u).

Transform F, to (13)-parastrophe of F, and rename the functional variables in a lexicographical
order:

Fi(F(y,z,u),x,x) = F3(y,z,u).

Renaming the individual variables according to the cycle (yxuz), we obtain the functional
equation (11).

Let the proper subterm be F,(x, y,z). Since the second appearances are ordered, then 4 is
x and t5 is y or u. Consequently, we have two equations: equation (12) and

Fi(F(x,y,2),x,y) = F3(z,u,u).
Apply (1) to the last functional equation:
F("Fy(x,y,2),u,u) = Fi(z,x,v).

To obtain equation (11), transform F; to (312)-parastrophe of F; and rename the functional
variables.

It remains to prove that the equations (9)—(12) are pairwise parastrophically primarily non-
equivalent. According to Corollary 2, we can prove that for every pair of these equations and
for every bijection 07, 02, 03, T of the set {1,2,3} there is a solution (f, f2, f3) of one equation
such that (“1f1¢, 2f2r, 3f3r) is not a solution of the other one. Note that all parastrophes of a
totally symmetric quasigroup and, in particular of a Steiner quasigroup, coincide.

It is easy to verify that an arbitrary Steiner quasigroup is a solution of each of the functional
equations (9), (10), (11). Suppose, a Steiner quasigroup (Q; f) is a solution of the equation
(12). Theorem 5 implies that f is a repetition-free superposition of two binary quasigroups.
According to the definition, every Steiner quasigroup is a loop. Therefore, by Corollary 1
there is a group (Q; +) of exponent two such that f(x,y,z) = x +y + z. There is no group
of exponent two of the order 10 but Steiner quadruple systems exist (see [7]) thus, there exists
a Steiner quasigroup of the order 10, but it can not be a solution of (12). Hence, according to
Corollary 1, the functional equation (12) is not parastrophically primarily equivalent to any of
the equations (9), (10), (11).

Let (f1, f2, f3) be an arbitrary triplet of Steiner quasigroup operations defined on the same
carrier Q. These operations can be isomorphic but all of them are pairwise different. It is
easy to see that (f1, f2, f3) is the solution of both functional equations: (9) and (10). Suppose
(fie, far, f37) is a solution of the functional equation (11) for some T € S3, i.e., the identity

fre(fae (%, y,2),u,1) = fae(%,y,2)
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holds. Since fi; is a Steiner quasigroup operation, then f,; = f3;. There is a contradiction to
the assumption. Thus, the triplet ( fi1, f2r, f3r) is not a solution of (11) for all T € S3. Therefore,
the functional equation (11) is parastrophically primarily equivalent to neither (9) nor (10).
Hence, it remains to prove the parastrophically primary non-equivalence of the equations
(9) and (10).
To avoid repetition, we will prove the following assertion.

Assertion. Let (Q;-,e) be an arbitrary non-commutative group, p is its non-identical automor-
phism and

flx,y,2) :=px-y-z L (33)
If for a bijection o € Sy there exists a bijection v such that for all x, y, z
F(x,y,z) =vx, (34)

thenv =porv=pL

To prove Assertion, consider the following notations:
He:=X, tyw:=Y, t30:=Y, Lty :=VX.

Then (34) can be written as % (14, tas, t37) = tar. According to the definition of o-parastrophe,
the equality is equivalent to f(t, t2, t3) = t4. Using (33), we obtain ptq - t5 - t5 L=ty ie

ptl . tz = t4 : t3. (35)

We will analyze the relationship taking into account that two of the terms t;, t, t3, t4 coincide
with y.

If t; = y, then (35) with y = e implies one of the following equalities: vx - x = e or x = vx.
Consequently, ve = e. That is why, (35) with x = e implies py - y = e or py = y. Since (-) is not
commutative and p is a non-identical automorphism of (-), then neither py = y~! nor py = y
is true.

Ift; = x, t, = vx, then (35) with x = e implies ve = y?. Therefrom when y = ¢ we have
ve = e, therefore y?> = e. But the group of exponent two is commutative. As a result we have a
contradiction to the assumption.

If t; = x and t, = y, then (35) with y = e implies px = vx thatis v = p.

Finally, let t; = vx, then (35) with y = e implies one of the equalities pvx - x = e or pvx = x.
The first equality follows from (35) when t, = x. Therefore, y> = e and consequently, the group
is commutative. As a result we have a contradiction to the assumption. The second equality
implies v = p~1.

Thus, Assertion has been proved.

We provide a proof of parastrophically primary non-equivalence of (9) and (10) by con-
tradiction. Suppose (9) and (10) are parastrophically primarily equivalent. Denote the corre-
sponding defining bijection sequence by (7, 07, 02, 03).

Let (Q; -, e) be an arbitrary non-commutative group and v, J, yd be different non-identical
automorphisms of (Q; -, e). Then, according to Theorem 3, the triplet (fi, f2, f3) of operations
defined by

filx,y,z) =9x-y- z 1 fo(x,y,z) ==0x-y- z 1 (36)

fa(x,y,z) == yox-y - z71
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is a solution of the equation (10). Lemma 1 implies that the triplet

(Ulfl"r’ UZfZT' U3f3r)

is a solution of the equation (9). By Theorem 2 there exist left-universally neutral operations
hy, hy, h3 and bijections «, B such that

1o y,2) = hiax,y, B 12),
?far(%,y,2) = ha(Bx,y,2), (37)
Pfac(x,y,2) = h3(ax,y,z).

If y = z, the second and the third equations are

2f (xyy) =Bx,  Pfy(xyy) =ax.

Applying Assertion to these equalities, we have o, 8 € {7,771,6,671,96,6 19~1}. Replace z
with Bz in the first equality of (37): “1f, (x,y, Bz) = hi(ax,y,z). If y = z, then

(Y, By) = ax. (38)

Introduce the notations: ti,, := X, tas, := y, t3e, := BY, tas := ax. Thus, (38) can be written
as “f 1 (Hy, tomy, t30y) = tagy- Using the definition of a parastrophe, we have fi(t1,t2,t3) =
ty. But fi; is one of the operations f;, f, f3, that is why we can apply the relationship (36):
Oty - ta-t31 =ty e,

Ot -ty =ty - 13,

where 6 € {v,4,70}.

If x has an appearance in 6t;, then we put x = 0. As a result, we obtain one of the equalities
y = By or 0 = y - By. The first equality is impossible, since the automorphisms %, J, v are not
identical. The second identity is impossible because the group is not commutative. If x has no
appearance in 0t;, then we put y = 0 and obtain the same contradictions.

Thus, our assumption is not true, therefore, the equations (9) and (10) are not parastrophi-
cally primarily equivalent. Theorem 1 has been proved. O

4 CONCLUSION

There exist exactly four classes of generalized quadratic functional equations of the length
three on invertible functions (i.e. quasigroup operations) concerning the parastrophically pri-
mary equivalence, (9)—(12) are their representatives whose solution sets are found in Theo-
rems 2-5.
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@yHKUiHe piBHSHHS Ha3MBaEThCS: Y3d2AIbHeH UM, SIKIIO BCi PYHKIiVHI 3MiHHI TonapHO pi3Hi;
MepHApHUM, SIKIIIO BCi 1ioro pYHKIINHI 3MiHHI € TepHApHUMY; K8a0pamuuHiuM, SIKIIO KOXKHa IIpe-
AMeTHa 3MiHHa Ma€ TOYHO ABi IIOSIBI; K64312py1no8uM, SIKIIIO JIOTO pO3B’SI3KM BUBYAIOTH AMIIIe Ha 060-
POTHMX PYHKIISIX. A082CUHOW0 (PYHKIIHOTO PiBHSHHS € KiABKICTD BCiX 10ro OyHKIIMHMX 3MiH-
HUX. 3AiViCHEeHO TOBHY KAacudikaliio 3 TOUHICTIO A0 TapacTpOodHO-TIepBMHHOI PiBHOCMABHOCTI y3a-
raAbHEHVX KBaAPaTWYHMX KBa3irpyHmoByx (pyHKUIHMX PiBHSHD AOBXVHY TpY. 3HalIA€HO MHOXIHN
PO3B’sI3KiB TIOBHOTO HA6OPY ITpeACTaBHUKIB.

Kntouosi cnoea i ¢ppasu: TepHapHa KBasirpyma, KBaApaTWUHe PiBHSIHHS, AOBXWHa (pyHKIIHOTO
PiBHSIHHS, TapacTPOdHO-TIEPBMHHA PiBHOCMABHICTD.



