УДК 517.98

T. V. Vasylyshyn, A. V. Zagorodnyuk

A QUESTION ON THE SPECTRA OF ALGEBRAS OF SYMMETRIC FUNCTIONS ON L_{∞} RELATED TO THE MOMENT PROBLEM

T. V. Vasylyshyn, A. V. Zagorodnyuk. A question on the spectra of algebras of symmetric functions on L_{∞} related to the moment problem, Mat. Stud. 38 (2012), 216–217.

We consider a question on description of the set of characters of the algebra of bounded type symmetric analytic functions on $L_{\infty}[0,1]$ and establish some connection with the trigonometric moment problem.

Т. В. Василишин, А. В. Загороднюк. О вопросе описания спектра алгебры симметрических функций на L_{∞} , имеющем отношение к проблеме моментов // Мат. Студії. — 2012. — Т.38, №2. — С.216—217.

Рассматривается вопрос описания множества характеров алгебры симметрических аналитических функций ограниченного типа на $L_{\infty}[0,1]$ и установлена связь с тригонометрической проблемой моментов.

1. The problem. Let $H_{bs}(L_{\infty})$ be the algebra of symmetric analytic functions of bounded type on the complex $L_{\infty}[0,1]$. Here "symmetric" means invariant with respect to measurable transformations of [0,1] preserving the Lebesgue measure. It is known (see [4]) that the functions $R_n(x) = \int_{[0,1]} (x(t))^n dt$, $x(t) \in L_{\infty}[0,1]$ $(n \in \mathbb{N})$ form an algebraic basis in the algebra of all symmetric polynomials $\mathcal{P}_s(L_{\infty}) \subset H_{bs}(L_{\infty})$ and that $\mathcal{P}_s(L_{\infty})$ is a dense subspace of $H_{bs}(L_{\infty})$. Hence, if ϕ is a complex homomorphism (i.e. a character) on $H_{bs}(L_{\infty})$, then ϕ is completely defined by its values on R_n $(n \in \mathbb{N})$. Since point evaluation functionals $\delta_x(f) = f(x)$, $f \in H_{bs}(L_{\infty})$, $x \in L_{\infty}[0,1]$ are characters, we have the following natural question.

Problem 1. Describe the set of all sequences of complex numbers $\{a_n\}_{n=1}^{\infty}$ such that $R_n(x) = \int_{[0,1]} (x(t))^n dt = a_n$ for some $x \in L_{\infty}[0,1]$.

2. Partial solutions and relations to the moment problem. In [5] it is proved that, for any finite sequence $\{a_n\}_{n=1}^m$ there is a function $x(\cdot) \in L_{\infty}[0,1]$ such that $R_n(x) = a_n$ $n \in \{1, 2, ..., m\}$ and $R_n(x) = 0$ for n > m.

Let us recall that a nondecreasing function $\sigma(\theta)$ is a solution of the trigonometric moment problem for a given sequence $\{c_k\}_{k=-\infty}^{\infty}$, $c_{-k}=\overline{c_k}$, $c_0\in\mathbb{R}$ if

$$c_k = \frac{1}{2\pi} \int_{[-\pi,\pi]} \exp(ik\theta) d\sigma(\theta), \quad k \in \mathbb{Z}.$$

2010 Mathematics Subject Classification: 42A70, 46E25, 46J20.

Keywords: spectra of algebras of symmetric analytic functions, trigonometric moment problem.

It is known (see e.g. [1, Theorem 5.1.2]) that the trigonometric moment problem has a solution if and only if the Hermitian forms

$$\omega_n(\xi) = \sum_{\alpha,\beta=0}^n c_{\alpha-\beta} \xi_{\alpha} \overline{\xi_{\beta}},$$

 $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n$ are nonnegative functions defined for all $n \in \mathbb{N}$. Making some simple calculations we can get the following result.

Theorem 1. Let $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$. If $\sigma(\theta)$ is a strictly monotone solution of the trigonometric moment problem for $\{c_n\}_{n=-\infty}^{\infty}$, $c_n = a_n$ for n > 0, $c_0 = 1$ and $c_{-n} = \overline{a_n}$, then $x_{\sigma} = \exp(i\sigma^{-1}(2\pi t - \pi))$ satisfies $R_n(x_{\sigma}) = a_n$ $(n \in \mathbb{N})$.

Corollary 1. If $\{b_n\}_{n=1}^{\infty} \subset \mathbb{C}$ is such that for a given fixed number $z \in \mathbb{C}$, $\{a_n\}_{n=1}^{\infty} = \{b_n/z^n\}_{n=1}^{\infty}$ satisfies the condition of Theorem 1, then $x(t) = z \exp(i\sigma^{-1}(2\pi t - \pi))$ satisfies $R_n(x) = b_n$ $(n \in \mathbb{N})$.

It is not difficult to construct a function $x(t) \in L_{\infty}[0,1]$ such that $\{b_n\}_{n=1}^{\infty} = \{R_n(x)\}_{n=1}^{\infty}$ does not satisfy the conditions of Corollary 1.

A discrete analogue of Problem 1, namely, the problem to describe all sequences $\{a_n\}_{n=1}^{\infty}$ such that $F_n(x) = a_n$, where $x = (x_1, \dots, x_n, \dots) \in \ell_1$ and $F_n(x) = \sum_{k=1}^{\infty} x_k^n$, was investigated in [2, 3] and is related to the problem of description of the set of all characters on the algebra $H_{bs}(\ell_1)$ of symmetric analytic functions of bounded type on ℓ_1 . Note that the discrete case is quite different from the continuous one. In particular, in [2] it is proved that, if for some m > 0, $F_n(x) = 0$ for all n > m, then x = 0, while there is a character ψ on $H_{bs}(\ell_1)$ such that $\psi(F_1) = 1$ and $\psi(F_n) = 0$ for n > 1. From results of [3] it follows that for every $x \in \ell_1$, $\sum_{n=0}^{\infty} G_n(z) z^n$ is a function of exponential type with zeros at $z_n = -1/x_n$ for all $x_n \neq 0$, where $G_0(z) = 1$, $G_1(z) = F_1(z)$, $nG_n(z) = F_1(z)G_{n-1}(z) - F_2(z)G_{n-2}(z) + \dots + (-1)^{n-1}F_n(z)$, n > 1. However, the problem about description of all characters on $H_{bs}(\ell_1)$ is still open.

REFERENCES

- 1. N.I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965.
- 2. R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebras of symmetric holomorphic functions on ℓ_p , Bull. London Math. Soc., **35** (2003), 55–64.
- 3. I. Chernega, P. Galindo, A. Zagorodnyuk, The convolution operation on the spectra of algebras of symmetric analytic functions, J. Math. Anal. Appl., 395 (2012), 569–577.
- 4. M. Gonzales, R. Gonzalo, J. A. Jaramillo, Symmetric polynomials on rearrangement invariant function spaces, J. London Math. Soc. (2), **59** (1999), 681–697.
- 5. T. Vasylyshyn, Construction of complex-valued functions by pre-defined values of integrals of their powers, Mathematical Bulletin of the Shevchenko Scientific Soc., 8 (2011), 17–27.

Vasyl Stefanyk Precarpathian National University taras_vasylyshyn@mail.ru, andriyzag@yahoo.com