
Математичнi Студiї. Т.38, №2 Matematychni Studii. V.38, No.2

УДК 517.98

T. V. Vasylyshyn, A. V. Zagorodnyuk

A QUESTION ON THE SPECTRA OF ALGEBRAS OF SYMMETRIC

FUNCTIONS ON L∞ RELATED TO THE MOMENT PROBLEM

T. V. Vasylyshyn, A. V. Zagorodnyuk. A question on the spectra of algebras of symmetric
functions on L∞ related to the moment problem, Mat. Stud. 38 (2012), 216–217.

We consider a question on description of the set of characters of the algebra of bounded type
symmetric analytic functions on L∞[0, 1] and establish some connection with the trigonometric
moment problem.

Т. В. Василишин, А. В. Загороднюк. О вопросе описания спектра алгебры симметриче-
ских функций на L∞, имеющем отношение к проблеме моментов // Мат. Студiї. – 2012.
– Т.38, №2. – C.216–217.

Рассматривается вопрос описания множества характеров алгебры симметрических
аналитических функций ограниченного типа на L∞[0, 1] и установлена связь с тригоно-
метрической проблемой моментов.

1. The problem. Let Hbs(L∞) be the algebra of symmetric analytic functions of bounded
type on the complex L∞[0, 1]. Here “symmetric” means invariant with respect to measurable
transformations of [0, 1] preserving the Lebesgue measure. It is known (see [4]) that the functi-
ons Rn(x) =

∫
[0,1]

(x(t))n dt, x(t) ∈ L∞[0, 1] (n ∈ N) form an algebraic basis in the algebra
of all symmetric polynomials Ps(L∞) ⊂ Hbs(L∞) and that Ps(L∞) is a dense subspace
of Hbs(L∞). Hence, if φ is a complex homomorphism (i.e. a character) on Hbs(L∞), then
φ is completely defined by its values on Rn (n ∈ N). Since point evaluation functionals
δx(f) = f(x), f ∈ Hbs(L∞), x ∈ L∞[0, 1] are characters, we have the following natural
question.

Problem 1. Describe the set of all sequences of complex numbers {an}∞n=1 such that Rn(x) =∫
[0,1]

(x(t))n dt = an for some x ∈ L∞[0, 1].

2. Partial solutions and relations to the moment problem. In [5] it is proved that,
for any finite sequence {an}mn=1 there is a function x(·) ∈ L∞[0, 1] such that Rn(x) = an
n ∈ {1, 2, . . . ,m} and Rn(x) = 0 for n > m.

Let us recall that a nondecreasing function σ(θ) is a solution of the trigonometric moment
problem for a given sequence {ck}∞k=−∞, c−k = ck, c0 ∈ R if

ck =
1

2π

∫
[−π,π]

exp(ikθ) dσ(θ), k ∈ Z.

2010 Mathematics Subject Classification: 42A70, 46E25, 46J20.
Keywords: spectra of algebras of symmetric analytic functions, trigonometric moment problem.

c©T. V. Vasylyshyn, A. V. Zagorodnyuk, 2012



A QUESTION ON THE SPECTRA OF ALGEBRAS 217

It is known (see e.g. [1, Theorem 5.1.2]) that the trigonometric moment problem has a
solution if and only if the Hermitian forms

ωn(ξ) =
n∑

α,β=0

cα−βξαξβ,

ξ = (ξ1, . . . , ξn) ∈ Cn are nonnegative functions defined for all n ∈ N. Making some simple
calculations we can get the following result.

Theorem 1. Let {an}∞n=1 ⊂ C. If σ(θ) is a strictly monotone solution of the trigonometric
moment problem for {cn}∞n=−∞, cn = an for n > 0, c0 = 1 and c−n = an, then xσ =
exp(iσ−1(2πt− π)) satisfies Rn(xσ) = an (n ∈ N).

Corollary 1. If {bn}∞n=1 ⊂ C is such that for a given fixed number z ∈ C, {an}∞n=1 =
{bn/zn}∞n=1 satisfies the condition of Theorem 1, then x(t) = z exp(iσ−1(2πt − π)) satisfies
Rn(x) = bn (n ∈ N).

It is not difficult to construct a function x(t) ∈ L∞[0, 1] such that {bn}∞n=1 = {Rn(x)}∞n=1

does not satisfy the conditions of Corollary 1.
A discrete analogue of Problem 1, namely, the problem to describe all sequences {an}∞n=1

such that Fn(x) = an, where x = (x1, . . . , xn, . . .) ∈ `1 and Fn(x) =
∑∞

k=1 x
n
k , was investi-

gated in [2, 3] and is related to the problem of description of the set of all characters on the
algebra Hbs(`1) of symmetric analytic functions of bounded type on `1. Note that the discrete
case is quite different from the continuous one. In particular, in [2] it is proved that, if for
somem > 0, Fn(x) = 0 for all n > m, then x = 0, while there is a character ψ on Hbs(`1) such
that ψ(F1) = 1 and ψ(Fn) = 0 for n > 1. From results of [3] it follows that for every x ∈ `1,∑∞

n=0Gn(z)z
n is a function of exponential type with zeros at zn = −1/xn for all xn 6= 0, where

G0(z) = 1, G1(z) = F1(z), nGn(z) = F1(z)Gn−1(z) − F2(z)Gn−2(z) + . . . + (−1)n−1Fn(z),
n > 1. However, the problem about description of all characters on Hbs(`1) is still open.
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