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Abstract. The paper contains a survey of basic facts about spectra of alge-
bras of analytic functions of bounded type on Banach spaces and some new re-
sults in this area. In particular we prove an analogue of Hilbert Nullstellensatz
Theorem for polynomials on Banach spaces and investigate some derivations
on algebras of analytic functions of bounded type which are associated with
points of their spectra.

Introduction

Let A be a complex commutative topological algebra. We denote by M(A)
the spectrum of A that is the set of continuous complex-valued homomorphisms
of A. M(A) can be naturally identified with the set of closed maximal ideals of A.
Recall that A is semisimple if the complex homomorphisms from M(A) separate
points of A. It is well known that every semisimple commutative Fréchet algebra
A is isomorphic to some subalgebra of continuous functions on M(A) endowed
with a natural topology. More exactly, for every a ∈ A there exists a function
â : M(A) → C defined by â(φ) := φ(a). The weakest topology on M(A) such
that all functions â, a ∈ A, are continuous is called the Gelfand topology. The
Gelfand topology coincides with the weak-star topology of the strong dual space A′

restricted to M(A). If A is a Banach algebra, M(A) is a weak-star compact subset
of the unit ball of A′.

If A is a uniform algebra of continuous functions on a metric space G, then
for any x ∈ G the point evaluation functional δ(x) : f 7→ f(x) belongs to M(A).
So we can see that the underlying set G may be identified with a subset of M(A).
Moreover, we can consider M(A) as the most natural domain for elements of A.
For example, every C∗ commutative Banach algebra A is isomorphic to the algebra
of all continuous (with respect to the Gelfand topology) functions on M(A). On
the other hand, if A consists of all continuous and bounded functions on a metric
space G, then M(A) is homeomorphic to the Ĉech-Stone compactification of G. If
A is a uniform algebra of holomorphic functions on an analytic manifold, we can
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ask about analytic structure on the set of maximal ideals, M(A). For instance, the
spectrum of the algebra of all analytic functions on an open subset Ω ⊂ Cn which
are continuous on the closure Ω coincides with the polynomially convex hull of Ω in
Cn. In particular, M(H(Cn)) = Cn, where H(Cn) is the algebra of entire functions
on Cn.

This paper is a survey of basic results about spectra of algebras of analytic
functions of bounded type on Banach spaces and a presentation of some new results
in this area.

In the first section we consider basic definitions and preliminary results about
analytic functions on Banach spaces. Section 2 is devoted to maximal ideals of al-
gebras of polynomials on Banach spaces. Using results of Aron, Cole and Gamelin
we prove an analogue of the Hilbert Nullstellensatz Theorem for polynomials on
Banach spaces. In the third section we consider some applications of the Null-
stellensatz for symmetric polynomials. In Section 4 we refer recent results from
[Z] about the description of ideals of the algebra Hb(X) of analytic functions of
bounded type on a Banach space X. Some examples and applications for homo-
morphisms on Hb(X) are given in Section 5 and Section 6. In Section 7 we describe
some new derivations on Hb(X) which are associated with points of Mb. Section 8
is a short survey of related topics on spectra of algebras of analytic functions on
Banach spaces.

1. Definitions and Preliminaries

Let X and Y be complex Banach spaces. A mapping P from X to Y is called
a continuous n-homogeneous polynomial if there exists a symmetric continuous n-
linear map AP from n-Cartesian product of X to Y such that P (x) = AP (x, . . . , x).
The Banach space of all n-homogeneous polynomials from the X to Y endowed
with the sup-norm topology on the unit ball of X is denoted by P(nX,Y ). A map
P : X → Y is said to be a polynomial of degree n if P = P0 + P1 + · · ·+ Pn, where
P0 ∈ Y, Pk ∈ P(kX, Y ) and Pn 6= 0. The space of all polynomials from X to Y will
be denoted by P(X,Y ). We denote the spaces P(kX,C) and P(X,C) by P(kX)
and P(X) respectively. Note that P(X) is a topological algebra endowed with the
locally convex topology of uniform convergence on bounded sets. We will use the
notation P(≤nX,Y ) for the space of C-valued m-degree polynomials on X, m ≤ n.

P ∈ P(X) is called a polynomial of finite type if it is a finite sum of finite
products of linear functionals. The space of n-homogeneous finite type polynomials
is denoted by Pf (nX). The closure of Pf (nX) in the topology of uniform conver-
gence on bounded sets is called the space of approximable polynomials and denoted
by PA(nX). Each approximable polynomial is weakly continuous on bounded sets.
The converse statement is true if X ′ has the approximation property [AP]. In
[ACG2] it is constructed an example of a Banach space X without the approxi-
mation property such that PA(nX) is a proper subspace in the space of all weakly
continuous polynomials on bounded sets.

Ω is a finitely open subset of a Banach space X if for any finite dimensional
affine subspace E of X, endowed with the Euclidean topology, E ∩Ω is open in E.

Definition 1.1. We say that a map f : Ω → Y is G-analytic (Gâteaux-
analytic), and write f ∈ HG(Ω, Y ), if the restriction of f to E ∩ Ω is analytic
for any finite dimensional affine subspace E (or, equivalently, for any complex line



SPECTRA OF ALGEBRAS OF ANALYTIC FUNCTIONS 3

E ∈ X). A G-analytic map defined on an open subset Ω ⊂ X to Y is called analytic,
written f ∈ H(Ω, Y ), if it is continuous.

Every analytic function f ∈ H(Ω, Y ) can be locally represented by its Taylor’s
series expansion

f(a + x) =
∞∑

n=0

fn(x) =
∞∑

n=0

1
n!

dnf(a)(x, . . . , x)

which converges uniformly on a neighborhood of a ∈ Ω, where dnf(a)(x, . . . , x) ∈
P(nX) is the nth Fréchet derivative of f at a in the direction (x, . . . , x).

The proof of Proposition 1.2 and Theorem 1.3 can be found in [D1] or [H].

Proposition 1.2. Let fk be a sequence of continuous k-homogeneous polynomi-
als from X to Y . A necessary and sufficient condition for existence of f ∈ H(X, Y )
such that fk = dkf(0) is that for any given ε > 0 each x ∈ X has a neighborhood
U such that supU ‖fk‖1/k ≤ ε for k large enough.

Let f ∈ H(Ω, Y ), where Ω is an open subset of X, and x ∈ Ω. The radius of
uniform convergence %x(f) of f at x is defined as supremum of λ, λ ∈ C such that
x + λB ⊂ Ω and the Taylor series of f at x converges to f uniformly on x + λB,
where B is the unit ball of X. The radius of boundedness of f at x is defined as
supremum of λ, λ ∈ C such that f is bounded on x + λB.

Theorem 1.3. The radius of uniform convergence of f at x coincides with the
radius of boundedness of f at x and if f ∈ H(X,Y ), then

%0(f) :=
(
lim sup

n→∞
‖fn‖1/n

)−1

,

where fn = dk(x)f/n!.

Denote by Hb(X, Y ) the space of Y -valued entire functions of bounded type, that
is, the space of all entire mappings from X to Y which are bounded on bounded
subsets (i.e. have the radius of boundedness equal to infinity). Note that if X is
an infinite dimensional Banach space, then there exists a C-valued entire function
on X, f, such that %x(f) < ∞ for every x ∈ X (see e.g. [D1], p.169). The
space Hb(X) = Hb(X,C) is a Fréchet algebra endowed with topology, generated by
seminorms

‖f‖r = sup{|f(x)| : x ∈ X, ‖x‖ < r},
where r > 0 varies over the rational numbers.

Each linear functional φ ∈ Hb(X)′ is continuous with respect to the norm of
uniform convergence on some ball in X. The radius function R(φ) of φ is defined
as the infimum of all r > 0 such that φ is continuous with respect to the norm of
uniform convergence on the ball rB.

Denote by φn the restriction of φ to the subspace of n-homogeneous polynomials
P(nX). Then φn is a continuous linear functional on P(nX) and

‖φn‖ = sup{φ(P ) : P ∈ P(nX), ‖P‖ ≤ 1}.
The following theorems are some kind of dual versions of Proposition 1.2 and

Theorem 1.3.
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Theorem 1.4. (Aron, Cole, Gamelin [ACG1]). The radius function R on
Hb(X)′ is given by

R(φ) = lim sup
n→∞

‖φn‖1/n.

Theorem 1.5. (Aron, Cole, Gamelin [ACG1]). Suppose that φn ∈ P(nX)′

for n ≥ 0, and suppose that the norms of φn satisfy ‖φn‖ ≤ csn for some c, s > 0.
Then there is a unique φ ∈ Hb(X)′ whose restriction to P(nX) coincides with φn,
n ≥ 0.

2. Spectra of Algebras of Polynomials

As we have indicated the spectrum of the space of entire functions on Cn can
be identified with Cn as a point set. The following results which were proved by
Aron, Cole and Gamelin show that in the infinite dimensional case the role of the
points of the underlying space play polynomially convergent nets.

Theorem 2.1. (Aron, Cole, Gamelin [ACG1]). Let Y be a complex vector
space. Let A be an algebra of functions on Y such that the restriction of each
f ∈ A to any finite dimensional subspace of Y is an analytic polynomial. Let I be a
proper ideal in A. Then there is a net (yα) in Y such that f(yα) → 0 for all f ∈ I.

Corollary 2.2. Let φ be any (possibly discontinuous) complex-valued homo-
morphism of Hb(X). Then there is a net (xα) in x such that P (xα) → φ(P ) for all
analytic polynomials P on X.

For a given uniform algebra A of continuous functions on a Banach space X we
define a A-topology on X as the weakest topology such that all functions of A are
continuous. So the A-topology is just the restriction of the Gelfand topology to X.

Proposition 2.3. Let P0(X) be a subalgebra of P(X). Then for every bounded
P0-convergent net (xα) ∈ X there is a continuous complex-valued homomorphism
φ on P0(X) such that P (xα) → φ(P ) for each P ∈ P0(X).

Proof. It is easy to see that φ(P ) := limα P (xα) is a complex-valued ho-
momorphism on P0(X). From the boundedness of xα it follows that φ is continu-
ous. ¤

Here we need a technical lemma.

Lemma 2.4. (Aron, Cole, Gamelin [ACG1]). Let Y be a complex vector space.
Let F = (f1, . . . , fn) be a map from Y to Cn such that the restriction of each fj to
any finite dimensional space of Y is a polynomial. Then the closure of the range
of F, F (X)− is an algebraic variety. Moreover there exists a finite dimensional
subspace Y0 ⊂ X such that F (Y0)− = F (X)−.

Theorem 2.5. Let P0(X) be a subalgebra of P(X) with unity which contains
all finite type polynomials. Let J be an ideal in P0(X) which is generated by a finite
number of polynomials P1, . . . , Pn ∈ P0(X). If the polynomials P1, . . . , Pn have no
common zeros, then J is not proper.

Proof. According to Lemma 2.4 there exists a finite dimensional subspace
Y0 = Cm ⊂ X such that F (Y0)− = F (X)−, where F (x) = (P1(x), . . . Pn(x)). Let
e1, . . . , em be a basis in Y0 and e∗1, . . . , e

∗
m be the coordinate functionals. Denote by

Pk |Y0 the restriction of Pk to Y0. Since dim Y0 = m < ∞, there exists a continuous



SPECTRA OF ALGEBRAS OF ANALYTIC FUNCTIONS 5

projection T : X → Y0. So any polynomial Q ∈ P(Y0) can be extended to a
polynomial Q̂ ∈ P0(X) by formula Q̂(x) = Q(T (x)). Q̂ belongs to P0(X) because
it is a finite type polynomial. Let us consider the map

G(x) = (P1(x), . . . , Pn(x), ê∗1(x), . . . , ê∗m(x)) : X → Cm+n.

By definition of G, G(X)− = G(Y0)−.
Suppose that J is a proper ideal in P0(X) and so J is contained in a max-

imal ideal JM . Let φ be a complex homomorphism such that JM = ker φ. By
Theorem 2.1 there exists a P0-convergent net (xα) such that φ(P ) = limα P (xα)
for every P ∈ P0(X). Since G(X)− = G(Y0)−, there is a net (zβ) ⊂ Y0 such
that limα G(xα) = limβ G(zβ). Note that each polynomial Q ∈ P(Y0) is gener-
ated by the coordinate functionals. Thus limβ Q(zβ) = limα Q̂(xα) = φ(Q). Also
limβ Pk |Y0 (zβ) = limα Pk(xα) = φ(Pk), k = 1, . . . , n. On the other hand, every
P0-convergent net on a finite dimensional subspace is weakly convergent and so it
converges to a point x0 ∈ Y0 ⊂ X. Thus Pk(x0) = 0 for 1 ≤ k ≤ n that contradicts
the assumption that P1, . . . , Pn have no common zeros. ¤

For an ideal J ∈ P0(X), V (J) denotes the zero of J, that is, the common set of
zeros of all polynomials in J. Let G be a subset of X. Then I(G) denotes the hull
of G, that is, a set of all polynomials in P0(X) which vanish on G. The set RadJ
is called the radical of J if P k ∈ J for some positive integer k implies P ∈ RadJ.
P is called a radical polynomial if it can be represented by a product of mutually
different irreducible polynomials. In this case (P ) = Rad(P ).

A subalgebra A0 of an algebra A is called factorial if for every f ∈ A0 the
equality f = f1f2 implies that f1 ∈ A0 and f2 ∈ A0.

Using a standard idea from Algebraic geometry, now we can prove the next
theorem which is a generalization of the well known Hilbert Nullstellensatz for
algebras of polynomials of infinitely many variables.

Theorem 2.6. Let P0(X) be a factorial subalgebra in P(X) which contains all
polynomials of finite type and let J be an ideal of P0(X) which is generated by a
finite sequence of polynomials P1, . . . , Pn. Then RadJ ⊂ P0(X) and

I[V (J)] = RadJ

in P0(X).

Proof. Since P0(X) is factorial, RadJ ⊂ P0(X) for every ideal J ⊂ P0(X).
Evidently, I[V (J)] ⊃ RadJ. Let P ∈ P0(X) and P (x) = 0 for every x ∈ V (J).
Let y ∈ C be an additional “independent variable” which is associated with a basis
vector e of an extra dimension. Consider a Banach space X ⊕ Ce = {x + ye : x ∈
X, y ∈ C}. We denote by P0(X)⊗P(C) the algebra of polynomials on X⊕Ce such
that every polynomial in P0(X)⊗P(C) belongs to P0(X) for arbitrary y ∈ C. The
polynomials P1, . . . , Pn, Py − 1 have no common zeros. By Theorem 2.5 there are
polynomials Q1, . . . , Qn+1 ∈ P0(X)⊗ P(C) such that

n∑

i=1

PiQi + (Py − 1)Qn+1 ≡ 1.
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Since it is an identity it will be still true for all vectors x such that P (x) 6= 0 if we
substitute y = 1/P (x). Thus

n∑

i=1

Pi(x)Qi(x, 1/P (x)) = 1.

Taking a common denominator, we find that for some positive integer N,
n∑

i=1

Pi(x)Q′i(x)P−N (x) = 1

or

(2.1)
n∑

i=1

Pi(x)Q′i(x) = PN (x),

where Q′(x) = Q(x, P−1)PN (x) ∈ P0(X). The equality (2.1) holds on an open
subset X\ kerP, so it holds for every x ∈ X. But it means that PN belongs to J.
So P ∈ RadJ. ¤

3. Applications for Symmetric Polynomials

Let G be a group of linear isometries of X. A subset V of X is said to be
G-symmetric if it is invariant under the action of G on X. A function with a G-
symmetric domain is G-symmetric if f(σ(x)) = f(x) for every σ ∈ G. It is clear
that the kernel of a G-symmetric polynomial is G-symmetric. We consider the
question: under which conditions a polynomial with a G-symmetric set of zeros is
G-symmetric?

First we observe that if P (x) is an irreducible polynomial then P (σ(x)) is
irreducible for every σ ∈ G. Indeed, if P (σ(x)) = P1(x)P2(x), then

P (x) = P1(σ−1(x))P2(σ−1(x)).

Recall that a group homomorphism of G to S1 = {eiϑ : 0 ≤ ϑ < 2π} is called a
character of G.

Proposition 3.1. Suppose G has no nontrivial characters. If P is radical and
kerP is a G-symmetric set, then P is a G-symmetric polynomial.

Proof. Since kerP = kerP ◦ σ for every σ ∈ G, then, by Theorem 2.6, P =
cP ◦σ for some constant c. Because σ is an isometry, |c| = 1. If c 6= 1, then c = c(σ)
is a nontrivial character of G. So c = 1. ¤

Suppose, for example that G = S1, that is, the group of actions x Ã eiϑx. Then
a homogeneous polynomial is G-symmetric only if it is a constant. However, the
zero set of any homogeneous polynomial is S1-symmetric.

Note that the subset of all G-symmetric polynomials is a subalgebra in P(X).

Theorem 3.2. Suppose that the algebra of G-symmetric polynomials on X is
factorial and that G has no nontrivial characters. Then the kernel of a polynomial
P is G-symmetric if and only if P is G-symmetric.

Proof. Let P = P k1
1 . . . P kn

n , where P1, . . . , Pn are mutually different irre-
ducible polynomials. Then P1 . . . Pn has the same zero set as P. So if kerP is
G-symmetric, then by Proposition 3.1, P1 . . . Pn is G-symmetric. By the assump-
tion of the theorem, all polynomials P1, . . . , Pn must be G-symmetric. So P is
G-symmetric as well. ¤
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Note that if there exist a G-symmetric polynomial P = P1P2 such that P1 is
not G-symmetric, then P 2

1 P2 is not a G-symmetric polynomial with a G-symmetric
kernel.

If X is an infinite dimensional space `p, 1 ≤ p < ∞ and G is the group of
permutations of the canonical basis elements, then it is not difficult to see that the
algebra of G-symmetric polynomials is factorial and G has no nontrivial characters.
For any n-dimensional space, 1 < n < ∞ there exists a nonsymmetric polynomial
which has a symmetric kernel. For example P (x) = x2

1x2 . . . xn has a symmetric
kernel in Cn but is not symmetric if n > 1.

4. The Spectrum of Hb(X)

All results of this section were proved in [Z].
Let us denote by An(X) the closure of the algebra, generated by all polynomials

in P(≤nX) with respect to the topology of uniform convergence on bounded sets.
It is clear that A1(X)∩P(nX) = PA(nX) and An(X) is a Fréchet algebra of entire
analytic functions on X for every n. The closure of the algebra of all polynomials
P(X) with respect to the uniform topology on bounded subsets coincides with
Hb(X). We will use the short notation Mb for the spectrum M(Hb(X)).

Lemma 4.1. Let φ ∈ Hb(X)′ such that φ(P ) = 0 for every P ∈ P(mX) ∩
Am−1(X), where m is a fixed positive integer and φm 6= 0. Then there is ψ ∈ Mb

such that ψk = 0 for k < m and ψm = φm. The radius function R(ψ) = ‖φm‖1/m.

Idea of proof. For every polynomial P ∈ P(mkX) we denote by P(m)(u)
the polynomial from P(k⊗m

s,πX) such that P(m)(x⊗m) = P (x), where x⊗m =
x⊗ · · · ⊗ x︸ ︷︷ ︸

m

.

Since φm 6= 0, there is an element w ∈ (⊗m
s,πX)′′, w 6= 0 such that for any

m-homogeneous polynomial P, φ(P ) = φm(P ) = P̃(m)(w), where P̃(m) is the Aron-
Berner extension of linear functional P(m) from ⊗m

s,πX to (⊗m
s,πX)′′ and ‖w‖ =

‖φm‖. For an arbitrary n-homogeneous polynomial Q we set

(4.1) ψ(Q) =
{

Q̃(m)(w) if n = mk for some k ≥ 0
0 otherwise,

where Q̃(m) is the Aron-Berner extension of the k-homogeneous polynomial Q(m)

from ⊗m
s,πX to (⊗m

s,πX)′′. Next we extend ψ to a continuous complex homomor-
phism on Hb(X) by linearity, distributivity and continuity.

The verification that ψ is well defined and multiplicative is a little bit technical
(see [Z] for details). ¤

For each fixed x ∈ X, the translation operator Tx is defined on Hb(X) by

(Txf)(y) = f(y + x), f ∈ Hb(X).

It is not complicated to check that Txf ∈ Hb(X) and for fixed φ ∈ Hb(X)′ the
function x 7→ φ(Txf), x ∈ X, belongs to Hb(X) (see [ACG1]).

For fixed φ, θ ∈ Hb(X)′ the convolution product φ ∗ θ in Hb(X) is defined by

(φ ∗ θ)(f) = φ(θ(Txf)), f ∈ Hb(X).

Let φ, θ ∈ Mb. By Corollary 2.2, there exist nets (xα), (yβ) ⊂ X such that

(4.2) φ(P ) = lim
α

P (xα), θ(P ) = lim
β

P (yβ)
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for every polynomial P. Thus for every polynomial P we have:

(φ ∗ θ)(P ) = lim
β

lim
α

P (xα + yβ).

Note that Mb is a semigroup with respect to the convolution product and φ∗θ 6= θ∗φ
in general (see [AGGM, Remark 3.5]). We denote φ1 ∗ · · · ∗ φn briefly by

n
+×

k=1
φk.

Let Ik be the minimal closed ideal in Hb(X), generated by all m-homogeneous
polynomials, 0 < m ≤ k. Evidently, Ik is a proper ideal (it contains no unit) so it
is contained in a closed maximal ideal (see [M1, p. 228]). Let

Φk := {φ ∈ Mb : kerφ ⊃ Ik}.
We set Φ0 := Mb. The functional δ(0), that is the point evaluation at zero, belongs
to Φk for every k > 0.

Corollary 4.2. If Am(X) 6= Am−1(X) for some m > 1, then there exists
ψ ∈ Φm−1 such that ψ /∈ Φm.

Note that A1(c0) = An(c0) for every n, but Ak(`p) = Am(`p) for k 6= m if and
only if k < p and m < p. Moreover, if X admits a polynomial which is not weakly
sequentially continuous, then the chain of algebras {Ak(X)} does not stabilize and
if X contains `1, then Ak(X) 6= Am(X) for k 6= m [Gon, DiGo].

Lemma 4.3. If φ, ψ ∈ Mb and ψ ∈ Φk−1, then φ ∗ ψ(P ) = φ(P ) + ψ(P ) for
every P ∈ P(kX).

Given a sequence (φn)∞n=1 ⊂ Mb, φn ∈ Φn−1, the infinite convolution
∞
+×

n=1
φn

denotes a linear multiplicative functional on the algebra of all polynomials P(X)

such that
∞
+×

n=1
φn(P ) =

k
+×

n=1
φn(P ) if P ∈ P(kX) for an arbitrary k. This multiplica-

tive functional uniquely determines a functional in Mb (which we denote by the

same symbol
∞
+×

n=1
φn) if it is continuous.

The point evaluation operator δ maps X into Mb by x 7→ δ(x), δ(x)(f) = f(x).
The operator δ̃ is the extension of δ onto X ′′, i.e. δ̃(x′′)(f) = f̃(x′′) for every
x′′ ∈ X ′′.

Theorem 4.4. There exists a sequence of dual Banach spaces (En)∞n=1 and a
sequence of maps δ(n) : En → Mb such that E1 = X ′′, En = P(nX)′∩I⊥n−1, δ(1) = δ̃
and such that an arbitrary complex homomorphism φ ∈ Mb has a representation

(4.3) φ =
∞
+×

n=1
δ(n)(un)

for some un ∈ En, n = 1, 2, . . ..
Furthermore, every complex homomorphism φ on P(X) which is defined by 4.3

is continuous and so it can be extended to a continuous complex homomorphism on
Hb(X) if and only if

R(φ) = lim sup
m→∞

∥∥∥∥
m
+×

n=1
δ(n)(un)

∥∥∥∥
1/m

< ∞.

Let us denote by E∞ the space of all finite sequences (u1, . . . , um, 0, . . .), uk ∈
Ek. According to Theorem 4.4, every finite sequence u = (u1, . . . , um, 0, . . .) defines
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a character φu =
m
+×

k=1
δ(k)(uk) ∈ Mb. Thus E∞ ⊂ Mb and for every u, v ∈ E∞,

φu+v ∈ Mb. Moreover, from the density of the polynomials in Hb(X) it follows that
E∞ is dense in Mb with respect to the Gelfand topology. So we have proved the
following theorem.

Theorem 4.5. Mb contains the dense linear subspace E∞ of all finite sequences
(u1, . . . , um, 0, . . .), uk ∈ Ek.

5. Examples

Let X be a Banach space such that P(X) = PA(X). Then A1 = An for every n
and from Theorem 4.4 it follows that Mb = X ′′. This holds, for example, if X = c0.
Tsirelson [Ts] constructed a reflexive Banach space T, with an unconditional basis
which contains no isomorphic copy of any `p. Alencar, Aron and Dineen [AAD]
proved that T is polynomially reflexive i.e. P(nT ) is reflexive for every n. Since T has
the approximation property, it follows from [Al] that P(T ) = PA(T ) and so Mb = T
(see [ACG1], [M2] for details). In general, if P(X) 6= PA(X), then A1 6= An for
some n and Theorem 4.4 implies that there exists a complex homomorphism φ (e.g.
φ = δ(n)(un), un ∈ En, un 6= 0) which does not belong to X ′′.

Proposition 5.1. Suppose that there exists P ∈ P(nX), n > 1 such that
|P (ek)| = 1, k = 1, 2, . . . for some normed weakly null sequence (ek) ⊂ X. Then
there exists φ ∈ Mb such that φ(P ) 6= 0 and φ(f) = 0 for every f ∈ X ′ = P(1X).

Proof. Let U be a free ultrafilter on N. Put φ(f) := limU f(ek). It is clear
that φ(P ) = 1 and

φ(f) = lim
U

f(ek) = lim
k→∞

f(ek) = 0

if f ∈ X ′. ¤

Notice that if X = `p and (ek) is the standard basis, then P (x) =
∑∞

k=1 xn
k ,

n ≥ p, where x =
∑∞

k=1 xkek satisfies conditions of Proposition 5.1.
In [ACG1] Aron, Cole and Gamelin proposed some description of the spec-

trum of Hb(`1) in terms of chains of measures (see [G] for an L1-version of this
construction).

According to [ACG1], φ ∈ Hb(`1)′ if and only if for every m = 1, 2, . . . there
exists a symmetric measure on β(Nm), νm and a constant c > 0 such that ‖νm‖ ≤ cm

and for each Pm ∈ P(m`1),

φ(Pm) =
∫

β(Nm)

Pmdνm,

where Pm is just Pm regarded as a vector from `∞(Nm). By Theorem 4.4, φ ∈
Mb(`1) if and only there is a sequence of symmetric measures (µm) which are
orthogonal to β(Nj) × β(Nk) ⊂ β(Nm), for m > 1, k + j = m, k, j > 0 and
functionals

um(Pm) =
∫

β(Nm)

Pmdµm

determine φ by formula (4.3).
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6. Homomorphisms on Hb(X)

We will use notations En ⊂ E∞ ⊂ Mb,

En := E1 × · · · × En = {(u1, . . . , un) : uk ∈ Ek, 1 ≤ k ≤ n}.
It is clear that En is a Banach space.

Proposition 6.1. Let Θ be a continuous homomorphism from Hb(X) to itself.
Then for every positive integer n there exists a map Fn : En → En such that for
every f ∈ An(X), Θ(f) = f̂ ◦ Fn.

Proof. If u = (u1, . . . , un) ∈ En. Then φu ◦ Θ =
m
+×

k=1
δ(k)(uk) ◦ Θ ∈ Mb. By

Theorem 4.4 there exists a point v = (v1, v2, . . .) ∈ Mb such that φu◦Θ(f) = f̂(v). If
f ∈ An(X), f̂(v) = f̂((v1, . . . , vn)). So we can assume that v ∈ En. Put Fn(u) := v.
Thus we have constructed the required mapping u 7→ Fn(u) with the property that
Θ(f) = f̂ ◦ Fn.

¤
A homomorphism Θ from Hb(X) to itself is called AB-composition homomor-

phism [CGM] if there exists F ∈ Hb(X ′′, X ′′) such that Θ̃(f)(x′′) = f̃(F (x′′)),
where f̃ is the Aron-Berner extension of f.

Theorem 6.2. Every polynomial on X is approximable if and only if every
homomorphism on Hb(X) is an AB-composition homomorphism.

Proof. Suppose that every polynomial on X is approximable. Then Hb(X) =
A1(X). By Proposition 6.1 for every homomorphism Θ: Hb(X) → Hb(X) there
exists a mapping F : X ′′ → X ′′ such that Θ(f) = f̂ ◦ F = f̃ ◦ F. In particular, for
every f ∈ X ′, f̃◦F ∈ Hb(X). So we can say that F is weak-star analytic map on X ′′.
By a classical result of Dunford [Du] and Grothendieck [Gr] on weak-star analytic
mappings, F is analytic on X ′′. Since f̃ ◦ F is bounded on bounded sets of X ′′ for
every f ∈ X ′ and weak-star boundedness implies boundedness, F ∈ Hb(X ′′, X ′′).

Suppose now that An(X) 6= A1(X) for some n. Let us choose un ∈ En un 6= 0
and l ∈ X ′, l 6= 0. Put F (x) := l(x)un and Θ(f)(x) := f̂(F (x)). Since F ∈
Hb(X,En), Θ(f)(x) ∈ Hb(X). But Θ is not an AB-composition homomorphism
because Θ 6≡ 0 and Θ(f) = 0 for every f ∈ A1. ¤

Since the approximation property of X ′ implies that every weakly continuous
on bounded sets polynomial is approximable [AP], we have the following corollary.

Corollary 6.3. (c.f. [CGM]). Let X ′ have the approximation property. Then
every polynomial on X is weakly continuous on bounded sets if and only if every
homomorphism on Hb(X) is an AB-composition homomorphism.

The result of Theorem 6.2 can be improved for a reflexive Banach space.

Theorem 6.4. (Mujica [M2]). If P(X) = PA(X) for a reflexive Banach space
X, then for every continuous homomorphism Θ: Hb(X) → Hb(X) there is a unique
map F ∈ Hb(X,X) such that Θ(f) = f ◦ F.

Corollary 6.5. Let X be a reflexive Banach space with P(X) = PA(X) and
F ∈ Hb(X, X). Suppose that Θ(f) = f ◦ F is an isomorphism of Hb(X). Then F
is invertible and F−1 ∈ Hb(X, X).
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Proof. By Theorem 6.4 there exists a map G ∈ Hb(X,X) such that Θ−1(f) =
f ◦G. It is easy to see that G = F−1. ¤

7. Derivations on Hb(X)

Let uk ∈ Ek. According to Theorem 4.4 we can define a complex homomorphism
φ ∈ Mb = δ(k)(uk) and φ(f) = f̂(uk) for every f ∈ Hb(X). However, uk belongs to
(⊗k

s,πX)′′ and so there is an another natural way to define a linear functional on
Hb(X), associated with uk. Let θ = θ(uk) =

∑
θm ∈ Hb(X)′ such that θk(P ) =

P̂ (uk) if P ∈ P(kX) and θm = 0 if m 6= k. Recall that here θm is the restriction of
θ to P(kX). It is easy to see that θ is not a homomorphism if uk 6= 0. We define a
linear operator on Hb(X), ∂(k)(uk) by

∂(k)(uk)(f)(x) := θ(uk) ◦ Tx(f).

For the multilinear form AP associated with an n-homogeneous polynomial P

we denote by ÂP (xn−k, uk) the value of the Gelfand transform at uk ∈ Ek of the
k-homogeneous polynomial AP (xn−k, ·), where x is fixed.

Theorem 7.1. Let uk ∈ Ek. Then the operator ∂(k)(uk) is a continuous deriva-
tion on Hb(X),

(7.1) ∂(k)(uk)(P )(x) =
(

n
k

)
ÂP (xn−k, uk)

for every P ∈ P(nX) and

(7.2) δ(k)(uk)(f)(x) =
∞∑

m=0

(k!)m

(mk)!
∂m
(k)(uk)(f)(x)

for every f ∈ Hb(X).

Proof. To prove formula (7.1) we observe that

P (z + x) =
n∑

m=0

(
n
m

)
AP (xn−m, zm).

So for a fixed x,

∂(k)(uk)(P )(x) = θ(uk)(P (z + x)) =
(

n
k

)
ÂP (xn−k, uk).

Note that if deg P ≤ k, then ∂(k)(uk)(P )(x) = 0 for every x by the definition of
∂(k)(uk).

Let P ∈ P(nX) and Q ∈ P(mX). The multilinear form APQ(xnm−k, zk) asso-
ciated with PQ can be represented by

APQ(xnm−k, zk) = APQ
1 (xnm−k, zk) + APQ

2 (xnm−k, zk) + APQ
3 (xnm−k, zk),

where
APQ

1 (xn−k, zk) = AP (xn−k, zk)AQ(xm);

APQ
2 (xn−k, zk) = AP (xn)AQ(zk, xm−k)

and

APQ
3 (xn−k, zk) =

1
k − 1

k−1∑
s=1

AP (xn−szs)AQ(zk−s, xm−k+s).
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If n ≤ k (resp. m ≤ k), then APQ
1 (resp. APQ

2 ) is equal to zero. By definitions of
θ(uk) and uk,

θ(uk)APQ
3 (xn−k, zk) = 0

for any fixed x. So

∂(k)(uk)(PQ)(x) = ∂(k)(uk)(P )(x)Q(x) + P (x)∂(k)(uk)(Q)(x).
Since ∂(k)(uk) is linear, it is a differentiation on the algebra Hb(X). The continuity
of ∂(k)(uk) follows from the continuity of θ(uk) and the translation Tx.

Let P ∈ P(nX) and n = km. From (7.1) we have that

∂m
(k)(uk)(P ) =

(
km
k

)(
k(m− 1)

k

)
· · ·

(
k
k

)
P̂ (uk) =

(mk)!
(k!)m

δ(k)(uk)(P ).

Thus

δ(k)(uk) =
∞∑

m=0

(k!)m

(mk)!
∂m
(k)(uk).

¤
Aron, Cole and Gamelin in [ACG1] considered the operation ∂(k)(uk) for the

case when k = 1 and so uk = u1 = z for some z ∈ X ′′. They used notation
(z)Txf = (∗z)f(x) instead ∂(1)(z)f(x). For this special case and using this notation
formula 7.2 can be rewritten as

δ(1)(z)f = δ̃(z)f =
∞∑

m=

1
m!

z∗m = exp(∗z).

8. Related Topics

The problem of the description of the spectrum of Hb(X) is related to questions
about spectra of various algebras of analytic functions on the unit ball B of X.
Carne, Cole and Gamelin in [CCG] investigated the Banach algebra H∞(B) of
bounded analytic functions on B ⊂ X if X is a dual Banach space and its subalgebra
generated by the weak-star continuous linear functionals.

In [ACG1] Aron, Cole and Gamelin introduced a Banach algebra H∞
uc(B) of

uniformly continuous analytic functions on the unit ball B and proved that the
spectrum of H∞

uc(B) consists of elements φ ∈ Mb such that R(φ) ≤ 1. Combining
this result with Theorem 4.4, we can see that every element φ in the spectrum
M(H∞

uc(B)) can be represented by formula (4.3) with R(φ) ≤ 1. Moreover, The
spectrum of H∞

uc(B) contains unit balls of Ek for every k.
Let H be a uniform algebra such that H∞

uc ⊆ H ⊆ H∞(B). Then there is a
natural projection of the spectrum M(H) onto {φ ∈ Mb : R(φ) ≤ 1} which is one-
to-one over {φ ∈ Mb : R(φ) < 1}. However, the projection onto {φ ∈ Mb : R(φ) ≤ 1}
is one-to-one if and only if H = H∞

uc(B) [ACG1, 12.1 Theorem]. Note that if X
is infinite dimensional, then the algebra of bounded analytic functions on B which
are continuous on the closure B, H∞

c (B) does not coincides with H∞
uc(B).

The next estimations for R(φ) in terms of norms of uk were obtained in [Z].

Proposition 8.1. Let φ ∈ Mb and φ =
∞
+×

k=1
δ(k)(uk), uk ∈ Ek be its represen-

tation. Then

lim sup
k→∞

‖uk‖1/k
k ≤ R(φ) ≤

∞∑

k=1

‖uk‖1/k
k .
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Dixon [Dix] has given an example of an algebra of polynomials of infinitely
many variables which admits discontinuous scalar-valued homomorphisms. Galindo
and al. give in [GGMM] a construction of a discontinuous scalar-valued homo-
morphism of the algebra of polynomials on arbitrary infinite dimensional Banach
space. The next corollary shows that the restriction of a discontinuous complex
homomorphism on An(X) ∩ P(X) can be continuous for every n. Note that the
problem of the existence of discontinuous complex homomorphisms on Hb(X) for
an infinite dimensional Banach space X is still open and equivalent to the famous
Michael Problem [Mi], [M1, p. 240].

Corollary 8.2. ([Z]). If the sequence of algebras An(X) does not stabilize,
then there is a discontinuous complex homomorphism ζ on P(X) such that the
restriction of ζ onto An(X) ∩ P(X) is a continuous complex homomorphism for
every n.

Note also that the technique of investigation of Hb(X) developed by Aron,
Cole and Gamelin in [ACG1] and [ACG2] was successfully applied for algebras
Hb(U) of analytic functions of bounded type on open sets [AGGM, M2] and
for algebras of vector valued analytic functions of bounded type [BM, GLMM,
GLMP]. Maximal ideals of symmetric analytic functions on `p were considered in
[AAGZ].
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[GGMM] P. Galindo, D. Garćıa, M. Maestre, and J. Mujica, Extension of multilinear mappings
on Banach spaces, Studia. Math. 108 (1994), 55–76.

[Du] N. Dunford, Uniformity in linear spaces, Trans. Amer. Math. Soc. 44 (1938), 305–356.
[G] T.W. Gamelin, Analytic functions on Banach spaces, in Complex Function Theory, Ed. Gau-

thier and Sabidussi, Kluwer Academic Publishers, Amsterdam, 1994, 187–223.
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[H] M. Hervé, Analyticity in Infiite Dimensional Spaces, de Gruyter Stud. in Math., vol. 10,

Walter de Gruyter, Berlin, New York, 1989.
[Mi] E. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc.

vol. 11, Providence, 1952.
[M1] J. Mujica, Complex Analysis in Banach Spaces, North-Holland, Amsterdam, New York,

Oxford, 1986.
[M2] J. Mujica, Ideals of holomorphic functions on Tsirelson’s space, Archiv der Mathematik 76

(2001), 292–298.
[Ts] B. Tsirelson, Not every Banach space contains an imbedding of `p or c0, Functional Anal.

Appl. 8 (1974), 138–141.
[Z] A. Zagorodnyuk, Spectra of algebras of entire functions on Banach spaces, Proc. Amer. Math.

Soc. 134 (2006), 2559–2569.

Institute for Applied Problems of Mechanics and Mathematics, Ukrainian Academy
of Sciences, 3 b, Naukova str., Lviv 79060, Ukraine

E-mail address: andriyzag@yahoo.com


