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The index of ∇̃-pseudo-projectively symmetric and in particular for ∇̃-projectively symmetric

semi-Riemannian manifolds, where ∇̃ is Ricci symmetric metric connection are discussed.
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INTRODUCTION

In 1923, Eisenhart [2] obtained the condition for the existence of a second order parallel

symmetric tensor in a Riemannian manifold and proved that if a Riemannian manifold admits

a second order parallel symmetric tensor other than a constant multiple of the Riemannian

metric, then it is reducible. In 1925, Levy [9] gave the necessary and sufficient condition for the

existence of second order parallel symmetric tensors and proved that a second order parallel

symmetric non-singular tensor in a real space form is always proportional to the Riemannian

metric. After that Sharma [13] improved the result of Levy and proved that any second order

parallel tensor (not necessarily symmetric) in a real space form of dimension greater than 2

is proportional to the Riemannian metric. Later in 1939, Thomas [17] defined and studied

the index of a Riemannian manifold. A set of metric tensors (i.e. symmetric non-degenerate

parallel (0, 2) tensor field on the differentiable manifold) {H1, . . . , Hℓ} is said to be linearly

independent if

c1H1 + · · ·+ cℓHℓ = 0, c1, . . . , cℓ ∈ R,

implies that c1 = · · · = cℓ = 0.

The set of metric tensors {H1, . . . , Hℓ} is said to be a complete set if any metric tensor H can

be written as

H = c1H1 + · · ·+ cℓHℓ , c1, . . . , cℓ ∈ R.

More precisely, the number of linearly independent metric tensors in a complete set of metric

tensors of a Riemannian manifold is called the index of the Riemannian manifold [17, p. 413].

Therefore the existence of a second order parallel symmetric tensor is very closely related

with the index of Riemannian manifolds. Then in 1968, Levine and Katzin [8] proved that

the index of an n-dimensional conformally flat manifold is n(n + 1)/2 or 1 according as it is a
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flat manifold or a manifold of non-zero constant curvature. In 1981, Stavre [14] proved that if

the index of an n-dimensional conformally symmetric Riemannian manifold (except the four

cases of being conformally flat, of constant curvature, an Einstein manifold or with covariant

constant Einstein tensor) is greater than 1, then it must be between 2 and n + 1. In 1982, Starve

and Smaranda [16] found the index of a conformally symmetric Riemannian manifolds with

respect to a semi-symmetric metric connection of Yano [22]. In the recent paper [18] author

and Tripathi studied the index of quasi-conformally symmetric, conformally symmetric and

concircularly symmetric semi-Riemannian manifolds with respect to any metric connection

and discussed some applications.

The index of the conformally flat and conformally symmetric (with respect to the Levi-

Civita connection, semi-symmetric metric connection of Yano [22] and metric connection)

(semi-)Riemannian manifolds were studied by many authors [8, 14, 16, 18]. Apart from con-

formal curvature tensor, the projective curvature tensor is another important tensor from the

differential geometric point of view and the pseudo-projective curvature tensor is a general-

ized case of projective curvature tensor. A real space form is always pseudo-projectively flat

and a pseudo-projectively flat manifold is always pseudo-projectively symmetric. But the con-

verse is not true in both cases. The study of manifolds with semi-Riemannian metrics is of

interest from the stand point of physics and relativity and have been studied by several au-

thors. Motivated by these studies, in this paper we study the index of pseudo-projectively

symmetric and projectively symmetric semi-Riemannian manifolds with respect to the metric

connection ∇̃. The paper is organized as follows: In Section 1, we give the preliminaries about

the index of a semi-Riemannian manifold and Ricci-symmetric metric connection. In Section

2, the definition of the pseudo-projective curvature tensor in terms of projective curvature ten-

sor and concircular curvature tensor with respect to a metric connection ∇̃ are given. We also

obtain a complete classification of ∇̃-pseudo-projective flat (in particular, pseudo-projective

flat) manifolds. In Section 3, we find out the index of ∇̃-pseudo-projectively symmetric and

∇̃-projectively symmetric semi-Riemannian manifolds. In the last section, some applications

in theory of relativity are discussed.

1 PRELIMINARIES

Let M be an n-dimensional differentiable manifold. Let ∇̃ be a linear connection in M.

Then torsion tensor T̃ and curvature tensor R̃ of ∇̃ are given by

T̃ (X, Y) = ∇̃XY − ∇̃YX, R̃(X, Y)Z = ∇̃X∇̃YZ − ∇̃Y∇̃XZ − ∇̃[X,Y]Z.

By a semi-Riemannian metric [10] on M, we understand a non-degenerate symmetric (0, 2)

tensor field g. In [17], a semi-Riemannian metric is called a metric tensor, a positive definite

symmetric (0, 2) tensor field, that is, Riemannian metric is called a fundamental metric tensor

and a symmetric (0, 2) tensor field g of rank less than n is called a degenerate metric tensor.

Let (M, g) be an n-dimensional semi-Riemannian manifold. A linear connection ∇̃ in M

is called a metric connection with respect to the semi-Riemannian metric g if ∇̃g = 0. If the

torsion tensor of the metric connection ∇̃ is zero, then it becomes Levi-Civita connection ∇,

which is unique by the fundamental theorem of Riemannian geometry. If the torsion tensor

of the metric connection ∇̃ is not zero, then it is called a Hayden connection [6, 23]. Semi-
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symmetric metric connections [22] and quarter symmetric metric connections [4] are some

well known examples of Hayden connections.

For a metric connection ∇̃ in an n-dimensional semi-Riemannian manifold (M, g), the cur-

vature tensor R̃ with respect to the ∇̃ satisfies the following conditions

R̃ (X, Y, Z, V) + R̃ (Y, X, Z, V) = 0, (1)

R̃ (X, Y, Z, V) + R̃ (X, Y, V, Z) = 0, (2)

where

R̃ (X, Y, Z, V) = g(R̃ (X, Y) Z, V).

Let {e1, . . . , en} be any orthonormal basis of vector fields in the manifold M. The Ricci ten-

sor S̃ and the scalar curvature r̃ of the semi-Riemannian manifold with respect to the metric

connection ∇̃ is defined by

S̃ (X, Y) =
n

∑
i=1

R̃ (ei, X, Y, ei) , r̃ =
n

∑
i=1

S̃ (ei, ei) .

The Ricci operator Q̃ with respect to the metric connection ∇̃ is defined by

S̃ (X, Y) = g(Q̃X, Y).

Define

ẽX = Q̃X −
r̃

n
X

and

Ẽ (X, Y) = g (ẽX, Y) .

Then

Ẽ = S̃ −
r̃

n
g.

The (0, 2) tensor Ẽ is known as tensor of Einstein [15] with respect to the metric connection ∇̃.

S̃ is symmetric if and only if Ẽ is symmetric.

Definition 1 ([18]). A metric connection ∇̃ with symmetric Ricci tensor S̃ is called a Ricci-

symmetric metric connection.

For more details about Ricci-symmetric metric connection see [18].

Definition 2 ([18]). Let (M, g) be an n-dimensional semi-Riemannian manifold equipped with

a metric connection ∇̃. A symmetric (0, 2) tensor field H, which is covariantly constant with

respect to ∇̃, is called a special quadratic first integral (for brevity SQFI) [7] with respect to

∇̃. The semi-Riemannian metric g is always an SQFI. A set of SQFI tensors {H1, . . . , Hℓ} with

respect to ∇̃ is said to be linearly independent if

c1H1 + · · ·+ cℓHℓ = 0, c1, . . . , cℓ ∈ R,

implies that c1 = · · · = cℓ = 0.

The set {H1, . . . , Hℓ} is said to be a complete set if any SQFI tensor H with respect to ∇̃ can

be written as H = c1H1 + · · ·+ cℓHℓ , c1, . . . , cℓ ∈ R.

The index [17] of the manifold M with respect to ∇̃, denoted by i∇̃, is defined as the number

ℓ of members in a complete set {H1, . . . , Hℓ}. Hence the index i∇̃ of the manifold M with

respect to the metric connection ∇̃ is the maximum number of linearly independent SQFI in a

complete set of SQFI.
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2 PSEUDO-PROJECTIVE CURVATURE TENSOR

Let (M, g) be an n-dimensional (n > 2) semi-Riemannian manifold equipped with a metric

connection ∇̃. The projective curvature tensor P̃ with respect to the ∇̃ is defined by [3, p. 90]

P̃(X, Y, Z, V) = R̃ (X, Y, Z, V) −
1

n − 1
(S̃ (Y, Z) g(X, V) − S̃ (X, Z) g(Y, V)), (3)

and the concircular curvature tensor Z̃ with respect to ∇̃ is defined by ( [21], [24, p. 87])

Z̃ (X, Y, Z, V) = R̃ (X, Y, Z, V) −
r̃

n (n − 1)
(g (Y, Z) g (X, V)− g (X, Z) g (Y, V)) . (4)

As a generalization of the notion of projective curvature tensor and concircular curvature ten-

sor, the pseudo-projective curvature tensor P̃∗ with respect to ∇̃ is defined by [12]

P̃∗ (X, Y, Z, V) = aR̃ (X, Y, Z, V)

+ b
(

S̃ (Y, Z) g (X, V)− S̃ (X, Z) g (Y, V)
)

−
r̃

n

(
a

n − 1
+ b

)
( g (Y, Z) g (X, V)− g (X, Z) g (Y, V)),

(5)

where a and b are constants. In fact, we have

P̃∗ (X, Y, Z, V) = −(n − 1)b P̃ (X, Y, Z, V) + (a + (n − 1)b)Z̃ (X, Y, Z, V) .

Since, there is no restrictions for manifolds if a = 0 and b = 0, therefore it is essential for us to

consider the case of a 6= 0 or b 6= 0. From (5) it is clear that if a = 1 and b = − 1/ (n − 1), then

P̃∗ = P̃ ; and if a = 1 and b = 0, then P̃∗ = Z̃ .

Now, we need the following

Definition 3. A semi-Riemannian manifold (M, g) equipped with a metric connection ∇̃ is

said to be:

(a) ∇̃-pseudo-projectively flat if P̃∗ = 0;

(b) ∇̃-projectively flat if P̃ = 0;

(c) ∇̃-concircularly flat if Z̃ = 0.

In particular, with respect to the Levi-Civita connection ∇, ∇̃-pseudo-projectively flat, ∇̃-

projectively flat and ∇̃-concircularly flat become simply pseudo-projectively flat, projectively

flat and concircularly flat respectively.

Definition 4. A semi-Riemannian manifold (M, g) equipped with a metric connection ∇̃ is

said to be:

(a) ∇̃-pseudo-projectively symmetric if ∇̃ P̃∗ = 0;

(b) ∇̃-projectively symmetric if ∇̃P̃ = 0;

(c) ∇̃-concircularly symmetric if ∇̃Z̃ = 0.
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In particular, with respect to the Levi-Civita connection ∇, ∇̃-pseudo-projectively symmetric,

∇̃-projectively symmetric and ∇̃-concircularly symmetric become simply pseudo-projectively

symmetric, projectively symmetric and concircularly symmetric respectively.

Theorem 1. Let M be a semi-Riemannian manifold of dimension n greater than 2. Then M is

∇̃-pseudo-projectively flat if and only if one of the following statement is true:

(i) a + (n − 1)b = 0, a 6= 0 6= b and M is ∇̃-projectively flat;

(ii) a + (n − 1)b 6= 0, a 6= 0, M is ∇̃-projectively flat and ∇̃-concircularly flat;

(iii) a + (n − 1)b 6= 0, a = 0 and Ricci tensor S̃ with respect to ∇̃ satisfies

S̃ −
r̃

n
g = 0, (6)

where r̃ is the scalar curvature with respect to ∇̃.

Proof. Using P̃∗ = 0 in (5) we get

0 =aR̃ (X, Y, Z, V) + b(S̃ (Y, Z) g (X, V)− S̃ (X, Z) g (Y, V))

−
r̃

n

(
a

n − 1
+ b

)
(g (Y, Z) g (X, V)− g (X, Z) g (Y, V)) ,

(7)

from which we obtain

(a + (n − 1)b)

(
S̃ −

r̃

n
g

)
= 0. (8)

Case 1. a+(n− 1)b = 0 and a 6= 0 6= b. Then from (5) and (3), it follows that (n− 1)b P̃ = 0,

which gives P̃ = 0. This gives the statement (i).

Case 2. a + (n − 1)b 6= 0 and a 6= 0. Then from (8), we have

S̃ (Y, Z) =
r̃

n
g(Y, Z). (9)

Using (9) in (7), we get

a(R̃ (X, Y, Z, V)−
r̃

n(n − 1)
(g(Y, Z)g(X, V) − g(X, Z)g(Y, V))) = 0. (10)

Since a 6= 0, then by (4), we get Z̃ = 0 and by using (10), (9) in (3), we get P̃ = 0. This gives the

statement (ii).

Case 3. a + (n − 2)b 6= 0 and a = 0, we get (6). This gives the statement (iii). Converse is

true in all cases.

Corollary 1. [19] Let M be a semi-Riemannian manifold of dimension n greater than 2. Then

M is pseudo-projectively flat if and only if one of the following statement is true:

(i) a + (n − 1)b = 0, a 6= 0 6= b and M is projectively flat;

(ii) a + (n − 1)b 6= 0, a 6= 0, M is real space form;

(iii) a + (n − 1)b 6= 0, a = 0 and M is Einstein manifold.
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3 INDEX OF PSEUDO-PROJECTIVE SYMMETRIC MANIFOLDS

Let (M, g) be an n-dimensional semi-Riemannian manifold equipped with the metric con-

nection ∇̃ and R̃ be the curvature tensor of M with respect to the metric connection ∇̃. The

integrability condition for the SQFI H is given by

H((∇̃U R̃)(X, Y)Z, V) + H(Z, (∇̃U R̃)(X, Y)V) = 0. (11)

Therefore, the solutions H of (11) is closely related to the index of pseudo-projectively sym-

metric and projectively symmetric semi-Riemannian manifolds with respect to the ∇̃.

Lemma 1. If (M, g) be an n-dimensional semi-Riemannian ∇̃-pseudo-projectively symmetric

manifold and n > 2, b 6= 0. Then

trace(∇̃U Ẽ) = 0,

where U is an arbitrary vector field.

Proof. Using (1) in (5), we get

P̃∗ (X, Y, Z, V) = aR̃ (X, Y, Z, V) + b(Ẽ (Y, Z) g (X, V)− Ẽ (X, Z) g (Y, V))

−
ar̃

n(n − 1)
( g (Y, Z) g (X, V)− g (X, Z) g (Y, V)).

(12)

Taking the covariant derivative of (12) and using ∇̃UP̃∗ = 0, we get

−a(∇̃U R̃) (X, Y, Z, V) = b
(
(∇̃U Ẽ) (Y, Z) g (X, V)− (∇̃U Ẽ) (X, Z) g (Y, V)

)

−
(∇̃U r̃)a

n (n − 1)
(g (Y, Z) g (X, V)− g (X, Z) g (Y, V)) .

(13)

Contracting Y and Z in (13) and using the condition (1) and (2), we have

−a(∇̃U S̃) (X, V) = b trace(∇̃U Ẽ)g (X, V)− (∇̃U Ẽ) (X, V)

−
(∇̃U r̃)a

n
g (X, V) .

(14)

Taking X = V = ej in (14), we obtain

b(n − 1)trace(∇̃U Ẽ) = 0,

trace(∇̃U Ẽ) = 0, (since b 6= 0 and n > 2).
(15)

Theorem 2. Let (M, g) be an n-dimensional semi-Riemannian ∇̃-pseudo-projective symmetric

manifold with n > 2 and b 6= 0, then the equation (11) has maximum number of solution and

consequently, i∇̃ = 1
2 n(n − 1).

Proof. Using (13) and (11), we find

0 = b((∇̃U Ẽ) (Y, Z) H (X, V)− (∇̃U Ẽ) (X, Z) H (Y, V)

+ (∇̃U Ẽ) (Y, V) H (X, Z)− (∇̃U Ẽ) (X, V) H (Y, Z))

−
a(∇̃U r̃)

n(n − 1)
(g (Z, Y) H (X, V)− g (Z, X) H (Y, V)

+ g (V, Y) H (X, Z)− g (V, X) H (Y, Z)).

(16)
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Taking X = Z = ei in (16) and using (15), we get

b(H((∇̃U ẽ)Y, V)− H((∇̃U ẽ)V, Y) + (∇̃U Ẽ) (V, Y) trace(H))

=
a(∇̃U r̃)

n(n − 1)
(−nH (Y, V) + g (Y, V) trace(H)).

(17)

Interchanging V with Y in (17) and then subtracting the resulting equation from (17), we obtain

H((∇̃U ẽ)Y, V) = H((∇̃U ẽ)V, Y). (18)

Using (18) in (17), we get

b(∇̃U Ẽ) (V, Y) =
a(∇̃U r̃)

n(n − 1)
(g (Y, V)−

n

trace(H)
H(Y, V)). (19)

Now, interchanging X with Z, and Y with V in (16) and taking the sum of the resulting equa-

tion and (16) and using (19), we see that the equation (11) is satisfied identically. Thus the

equation has the maximum number of solutions for a ∇̃-pseudo-projective symmetric semi-

Riemannian manifold. Consequently, M admits the maximum number of linearly independent

SQFI. So, the index of a ∇̃ -pseudo-projectively symmetric semi-Riemannian manifold is

i∇̃ =
1

2
n (n − 1) .

Corollary 2. If (M, g) is an n-dimensional semi-Riemannian ∇̃-projectively symmetric mani-

fold, then the equation (11) has maximum number of solution and consequently,

i∇̃ = 1
2 n(n − 1).

4 CONCLUSION

A semi-Riemannian manifold is said to be decomposable [17] (or locally reducible) if there

always exists a local coordinate system
(

xi
)

so that its metric takes the form

ds2 =
r

∑
a,b=1

gabdxadxb +
n

∑
α,β=r+1

gαβdxαdxβ,

where gab are functions of x1, . . . , xr and gαβ are functions of xr+1, . . . , xn. A semi-Riemannian

manifold is said to be reducible if it is isometric to the product of two or more semi-Riemannian

manifolds; otherwise it is said to be irreducible [17]. A reducible semi-Riemannian manifold is

always decomposable but the converse need not be true.

The concept of the index of a (semi-)Riemannian manifold gives a striking tool to decide

the reducibility and decomposability of (semi-)Riemannian manifolds. For example, a Rie-

mannian manifold is decomposable if and only if its index is greater than one [17]. Moreover,

a complete Riemannian manifold is reducible if and only if its index is greater than one [17]. A

second order (0, 2)-symmetric parallel tensor is also known as a special Killing tensor of order

two. Thus, a Riemannian manifold admits a special Killing tensor other than the Riemannian

metric g if and only if the manifold is reducible [2], that is the index of the manifold is greater
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than 1. In 1951, Patterson [11] found a similar result for semi-Riemannian manifolds. In fact, he

proved that a semi-Riemannian manifold (M, g) admitting a special Killing tensor Kij, other

than g, is reducible if the matrix (Kij) has at least two distinct characteristic roots at every point

of the manifold. In this case, the index of the manifold is again greater than 1.

By Theorem 2, we conclude that a ∇̃-pseudo-projectively symmetric Riemannian manifold

(where ∇̃ is any Ricci symmetric metric connection, not necessarily Levi-Civita connection) is

decomposable and it is reducible if the manifold is complete.

It is known that the maximum number of linearly independent Killing tensors of order 2

in a semi-Riemannian manifold (Mn, g) is 1
12 n(n + 1)2(n + 2), which is attained if and only

if M is of constant curvature. The space of constant curvature and projectively flat space are

identical classes. Therefore the maximum number of linearly independent Killing tensors of

order 2 in a semi-Riemannian manifold (Mn, g) is 1
12 n(n + 1)2(n + 2), which is attained if and

only if M is projectively flat. The maximum number of linearly independent Killing tensors

in a 4-dimensional spacetime is 50 and this number is attained if and only if the spacetime

is of constant curvature [5] or projectively flat. But spaces of constant curvature do not admit

special quadratic first integrals. From Theorem 2, we also conclude that the maximum number

of linearly independent special Killing tensors, that is, SQFI in a 4-dimensional spacetime is 6.

From the physical point of view Killing tensors are important because they provide quad-

ratic first integrals of the geodesics. It is shown that [1] the special quadratic first integrals

can be written as the sum of products of two linear first integrals only if the space admits a

covariantly constant vector. Therefore special quadratic first integrals are useful in the analysis

of the geodesics of given relativistic space-times possessing groups of motion of order less

than or equal to 2.

The charged Kerr solution with or without cosmological constant admits a quadratic first

integral which is irreducible provided the angular momentum parameter is not zero [20]. But

this quadratic first integral is not special [1].
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[17] Thomas T.Y. The decomposition of Riemann spaces in the large. Monatsh. Math. Phys. 1939, 47, 388–418.

[18] Tripathi M.M., Gupta P., Kim J.-S. Index of quasi-conformally symmetric semi-Riemannian manifolds. Int. Jour.

Math. Math. Sci. 2012, 2012, 461383.

[19] Tripathi M.M., Gupta P. T -curvature tensor on a semi-Riemannian manifolds. J. Adv. Math. Stud. 2011, 4 (1),

117–129.

[20] Walker M., Penrose R. On quadratic first integrals of the geodesic equations for type {22} spacetimes. Comm. Math.

Phys. 1970, 18, 265–274. doi:10.1007/BF01649445

[21] Yano K. Concircular transformations. In: Concircular Geometry, 1. Proc. Imp. Acad. Tokyo., Tokyo, 1940. 16,

195–200.

[22] Yano K. On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 1970, 15, 1579–1586.

[23] Yano K. The Hayden connection and its applications. Southeast Asian Bull. Math. 1982, 6 (2), 96–114.

[24] Yano K., Bochner S. Curvature and Betti numbers. In: Annals of Mathematics Studies, 32. Princeton Univ.

Press, 1953.

Received 02.02.2015

Гупта П. Iндекс псевдопроективно симетричних напiврiманових многовидiв // Карпатськi матем.

публ. — 2015. — Т.7, №1. — C. 57–65.

Дослiджується iндекс ∇̃-псевдопроективно симетричних i зокрема ∇̃-проективно симетри-

чних напiврiманових многовидiв, де ∇̃ — це симетричний метричний зв’язок Рiччi.

Ключовi слова i фрази: метричний зв’язок, псевдопроективний тензор кривизни, проектив-

ний тензор кривизни, напiврiмановий многовид, iндекс многовиду.


