
ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2015, 7 (2), 226–235 Карпатськi матем. публ. 2015, Т.7, №2, С.226–235

doi:10.15330/cmp.7.2.226-235

RAHMAN SH.

GEOMETRY OF HYPERSURFACES OF A QUARTER SYMMETRIC NON METRIC

CONNECTION IN A QUASI-SASAKIAN MANIFOLD

The purpose of the paper is to study the notion of CR-submanifold and the existence of some

structures on a hypersurface of a quarter symmetric non metric connection in a quasi-Sasakian man-

ifold. We study the existence of a Kahler structure on M and the existence of a globally metric frame

f -structure in sence of Goldberg S.I., Yano K. [6]. We discuss the integrability of distributions on

M and geometry of their leaves. We have tries to relate this result with those before obtained by

Goldberg V., Rosca R. devoted to Sasakian manifold and conformal connections.
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INTRODUCTION

Let ∇ be a linear connection in an n-dimensional differentiable manifold M. The torsion

tensor T and the curvature tensor R of ∇ are respectively given by:

T(X, Y) = ∇XY −∇YX − [X, Y],

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z.

The connection ∇ is symmetric if the torsion tensor T vanishes, otherwise it is non-symmetric.

The connection ∇ is metric if there is a Riemannian metric g in M such that ∇g = 0, otherwise

it is non-metric. It is well known that a linear connection is symmetric and metric if and only

if it is the Levi-Civita connection. In [5] S. Golab introduced the idea of a quarter-symmetric

connection. A linear connection is said to be a quarter-symmetric connection if its torsion

tensor T is of the form

T(X, Y) = u(Y)ϕX − u(X)ϕY,

where u is a 1-form and ϕ is a tensor field of type (1, 1). Some properties of quarter symmetric

connections are studied in [7]. In [8, 9] S. Rahman studied Transversal hypersurfaces of almost

hyperbolic contact manifolds with a quarter symmetric non metric connections respectively.

The concept of CR-submanifold of a Kahlerian manifold has been defined by A. Bejancu [3].

Later A. Bejancu, N. Papaghiue [4] introduced and studied the notion of semi-invariant sub-

manifold of a Sasakian manifold. These submanifolds are closely related to CR-submanifolds

in a Kahlerian manifold. However the existence of the structure vector field implies some

important changes.
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The paper is organized as follows. In the first section we recall some results and formulae

for the later use. In the second section we prove the existence of a Kahler structure on M

and the existence of a globally metric frame f -structure in sence of S.I. Goldberg, S.I. Yano.

The third section is concerned with integrability of distributions on M and geometry of their

leaves. In section 4 the study of conformal connections with respect to the quarter symmetric

non metric connection in a quasi-Sasakian manifold is considered.

1 PRELIMINARIES

Let M̄ be a real 2n + 1 dimensional differentiable manifold, endowed with an almost con-

tact metric structure ( f , ξ, η, g). Then we have

(a) f 2 = −I + η ⊗ ξ, (b) η(ξ) = 1, (c) η ◦ f = 0, (d) f (ξ) = 0,

(e) η(X) = g(X, ξ), ( f ) g( f X, fY) = g(X, Y) − η(X)η(Y)
(1)

for any vector field X, Y tangent to M̄, where I is the identity on the tangent bundle ΓM̄ of M̄.

Throughout the paper, all manifolds and maps are differentiable of class C∞. We denote by

F(M̄) the algebra of differentiable functions on M̄ and by Γ(E) the F(M̄) module of sections

of a vector bundle E over M̄.

The Niyembuis tensor field, denoted by N f , with respect to the tensor field f , is given by

N f (X, Y) = [ f X, fY] + f 2[X, Y] − f [ f X, Y] + f [X, fY]

for all X, Y ∈ Γ(TM̄) and the fundamental 2-form Φ is given by Φ(X, Y) = g(X, fY) for

all X, Y ∈ Γ(TM̄). The curvature tensor field of M̄, denoted by R̄ with respect to the Levi-

Civita connection ∇̄, is defined by R̄(X, Y)Z = ∇̄X∇̄YZ − ∇̄Y∇̄XZ − ∇̄[X,Y]Z for all X, Y, Z ∈

Γ(TM̄).

Definition 1. (a) An almost contact metric manifold M̄ ( f , ξ, η, g) is called normal if

N f (X, Y) + 2dη(X, Y)ξ = 0 for all X, Y ∈ Γ(TM̄),

or equivalently ([1]) (∇̄ f X f )Y = f (∇̄X f )Y − g((∇̄Xξ, Y) for all X, Y ∈ Γ(TM̄).

(b) The normal almost contact metric manifold M̄ is called cosympletic if dΦ = dη = 0.

Let M̄ be an almost contact metric manifold M̄. According to [1] we say that M̄ is a quasi-

Sasakian manifold if and only if ξ is a Killing vector field and

(∇̄X f )Y = g(∇̄ f Xξ, Y)ξ − η(Y)∇̄ f Xξ for all X, Y ∈ Γ(TM̄). (2)

Next we define a tensor field F of type (1, 1) by FX = −∇̄Xξ for all X ∈ Γ(TM̄).

Lemma 1. Let M̄ be a quasi-Sasakian manifold. Then for all X, Y ∈ Γ(TM̄) we have

(a) (∇̄ξ f )X = 0, (b) f ◦ F = F ◦ f , (c) g(FX, Y) + g(X, FY) = 0,

(d) Fξ = 0, (e) η ◦ F = 0, ( f ) (∇̄X F)Y = R̄(ξ, X)Y.
(3)

The tensor field f defined on M̄ is an f -structure in sense of Yano that is f 3 + f = 0.

Definition 2. The quasi-Sasakian manifold M̄ is said to be of rank 2p + 1 iff

η ∧ (dη)p 6= 0 and (dη)p+1 = 0.
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On other hand, a quarter symmetric non metric connection ∇ on M is defined by

∇̄XY = ∇XY + η(Y)ϕX. (4)

Using (4) in (2), we have

(∇̄X f )Y = g(∇̄ f Xξ, Y)ξ − η(Y)∇̄ f Xξ + η(Y)X − η(X)η(Y)ξ, (5)

∇̄Xξ = −FX + f X. (6)

Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-Sasakian

manifold M̄ and denote by N the unit vector field normal to M. Denote by the same symbol g

the induced tensor metric on M, by ∇ the induced Levi-Civita connection on M and by TM⊥

the normal vector bundle to M. The Gauss and Weingarten formulas of hypersurfaces of a

quarter symmetric non metric connections are

(a) ∇̄XY = ∇XY + B(X, Y)N, (b) ∇̄X N = −AX, (7)

where A is the shape operator with respect to the section N. It is known that for all X, Y ∈

Γ(TM)

B(X, Y) = g(AX, Y). (8)

Because the position of the structure vector field with respect to M is very important we

prove the following result.

Theorem 1. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-

Sasakian manifold M̄. If the structure vector field ξ is normal to M then M̄ is cosympletic

manifold and M is totally geodesic immersed in M̄.

Proof. Because M̄ is quasi-Sasakian manifold, then it is normal and dΦ = 0 ([2]). By direct

calculation using (7) (b), we infer for all X, Y ∈ Γ(TM̄)

dη(X, Y) =
1

2
{(∇̄Xη)(Y) − (∇̄Yη)(X)} =

1

2
{g(∇̄Xξ, Y)− g(∇̄Yξ, X)},

2dη(X, Y) = g(AY, X) − g(AX, Y) = 0.
(9)

From (7) (b) and (9) we deduce for all X, Y ∈ Γ(TM̄)

0 = dη(X, Y) =
1

2
{(∇̄Xη)(Y) − (∇̄Yη)(X)}

=
1

2
{g(∇̄Xξ, Y)− g(∇̄Yξ, X)} = g(Y, ∇̄Xξ) = −g(AX, Y) = 0,

(10)

which proves that M is totally geodesic. From (10) we obtain ∇̄Xξ = 0 for all X ∈ Γ(TM̄). By

using (6), (3) (b) and (1) (d) from the above relation we state for all X ∈ Γ(TM̄)

− f (∇̄ f Xξ) + f X = ∇̄Xξ, (11)

because f X ∈ Γ(TM̄) for all X ∈ Γ(TM̄). Using (11) and the fact that ξ is a not Killing vector

field, we deduce dη 6= 0.

Next we consider only the hypersurface which are tangent to ξ. Denote by U = f N and

from (1) (f), we deduce g(U, U) = 1. Moreover, it is easy to see that U ∈ Γ(TM). Denote

by D⊥ = Span(U) the 1-dimensional distribution generated by U, and by D the orthogonal

complement of D⊥ ⊕ (ξ) in TM. It is easy to see that

f D = D, D⊥ ⊆ TM⊥, TM = D ⊕ D⊥ ⊕ (ξ), (12)

where ⊕ denote the orthogonal direct sum. According with [1] from (12) we deduce that M is

a CR-submanifold of M̄.
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Definition 3. A CR-submanifold M of a quasi-Sasakian manifold M̄ is called CR-product if

both distributions D ⊕ (ξ) and D⊥ are integrable and their leaves are totally geodesic subman-

ifold of M.

Denote by P the projection morphism of TM to D and using the decomposion in (10) we

deduce for all X ∈ Γ(TM̄) that

X = PX + a(X)U + η(X)ξ, f X = f PX + a(X) fU + η( f X)ξ,

therefore f X = f PX − a(X) fU. Since

U = f N, fU = f 2N = −N + η(N)ξ = −N + g(N, ξ)ξ = −N,

where a is a 1-form on M defined by a(X) = g(X, U), X ∈ Γ(TM). From (12) using (1) (a) we

infer for all X ∈ Γ(TM)

f X = tX − a(X)N, (13)

where t is a tensor field defined by tX = f PX, X ∈ Γ(TM). It is easy to see that

(a) tξ = 0, (b) tU = 0. (14)

2 INDUCED STRUCTURES ON A HYPERSURFACE OF A QUARTER SYMMETRIC NON METRIC

CONNECTION IN A QUASI-SASAKIAN MANIFOLD

The purpose of this section is to study the existence of some induced structure on a hyper-

surface of a quarter symmetric non metric connection in a quasi-Sasakian manifold. Let M be

a hypersurface of a quarter symmetric non metric connection in a quasi-Sasakian manifold M̄.

From (1) (a), (13) and (14) we obtain t3 + t = 0, that is the tensor field t defines an f -structure

on M in sense of Yano [10]. Moreover, from (1) (a), (13), (14) we infer for all X ∈ Γ(TM)

t2X = −X + a(X)U + η(X)ξ. (15)

Lemma 2. On a hypersurface of a quarter symmetric non metric connection M in a quasi-

Sasakian manifold M̄ the tensor field t satisfies for all X, Y ∈ Γ(TM)

(a) g(tX, tY) = g(X, Y) − η(X)η(Y) − a(X)a(Y), (b) g(tX, Y) + g(X, tY) = 0. (16)

Proof. From (1) (f), and (13) we deduce for all X, Y ∈ Γ(TM)

g(X, Y) − η(X)η(Y) = g( f X, fY) = g(tX − a(X)N, tY − a(Y)N)

= g(tX, tY) − a(Y)g(tX, N) − a(X)g(N, tY)

+ a(X)a(Y)g(N, N) = g(tX, tY) + a(X)a(Y),

g(tX, tY) = g(X, Y) − η(X)η(Y) − a(X)a(Y),

g(tX, Y) + g(X, tY) = g( f X + a(X)N, Y) + g(X, fY + a(Y)N)

= g( f X, Y) + a(X)g(N, Y) + g(X, fY) + a(Y)g(X, N)

= g( f X, Y) + g(X, fY) = 0.
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Lemma 3. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-

Sasakian manifold M̄. Then we have

(a) FU = f Aξ, (b) FN = Aξ, (c) [U, ξ] = 0. (17)

Proof. We take X = U and Y = ξ in (2) f (∇̄U ξ) = −∇̄Nξ − U. Then using (1) (a), (6), (7) (b),

we deduce the assertion (a). The assertion (b) follows from (1) (a), (3) (b) and (7) (b) we derive

∇̄ξU = (∇̄ξ f )N + f ∇̄ξ N = − f Aξ = −FU = ∇̄Uξ,

[U, ξ] = ∇̄Uξ − ∇̄ξU = ∇̄Uξ − ∇̄Uξ = 0,

which prove assertion (c).

By using the decomposition TM̄ = TM ⊕ TM⊥, we deduce

FX = αX − η(AX)N for all X ∈ Γ(TM̄),

where α is a tensor field of type (1, 1) on M, since g(FX, N) = −g(X, FN) = −g(X, Aξ) =

−η(AX) for all X ∈ Γ(TM̄). By using (5), (6), (7), (13) and (15) we obtain following theorem.

Theorem 2. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-

Sasakian manifold M̄. Then the covariant derivative of a tensors t, a, η and α are given by

(a) (∇Xt)Y = g(FX, fY)ξ−g(X, Y)ξ−a(Y)AX+B(X, Y)U+η(Y)[αtX+X−η(AX)U],

(b) (∇Xa)Y = B(X, tY) + η(Y)η(AtX),

(c) (∇Xη)Y = g(Y,∇Xξ),

(d) (∇Xα)Y = R(ξ, X)Y + B(X, Y)Aξ − η(AY)AX for all X, Y ∈ Γ(TM)

(18)

respectively, where R is the curvature tensor field of M.

From (5), (6), (14) and (18) (a) we get the following.

Proposition 1. On a hypersurface of a quarter symmetric non metric connection M in a quasi-

Sasakian manifold M̄, we have for all X ∈ Γ(TM)

(a) ∇XU = −tAX + η(AtX)ξ, (b) B(X, U) = a(AX). (19)

Theorem 3. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-

Sasakian manifold M̄. The tensor field t is a parallel with respect to the Levi Civita connection

∇ on M iff for all X ∈ Γ(TM)

(a) AX = η(AX)ξ − a(X)ξ + a(AX)U, (b) FX = f X − η(AX)N + a(X)N. (20)

Proof. Suppose that the tensor field t is parallel with respect to ∇, that is ∇t = 0. By using (2)

(a), we deduce for all X, Y ∈ Γ(TM)

η(Y)[αtX + X − η(AX)U] − a(Y)AX + g(FX, fY)ξ + B(X, Y)U − g(X, Y)ξ = 0. (21)

Take Y = U in (21) and using (7) (b), (8), (19) (b) we infer

η(U)[αtX + X − η(AX)U] − a(U)AX + g(FX, fU)ξ − g(X, U)ξ + B(X, U)U = 0,

η(U) = 0, a(U) = 1, g(X, N) = 0,

− AX + g(FX, fU)ξ − g(X, U)ξ + a(AX)U = 0,

AX = g(FX,−N)ξ − a(X)ξ + a(AX)U

= g(X, FN)ξ − a(X)ξ + a(AX)U = g(X, Aξ)ξ − a(X)ξ + a(AX)U,

AX = η(AX)ξ − a(X)ξ + a(AX)U
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and the assertion (20) (a) is proved. Next let Y = f Z, Z ∈ Γ(D) in (21) and using (1) (f), (3) (b),

(17), (20) (a), we deduce for all X ∈ Γ(TM)

g(X, FZ) = 0 ⇒ FX = f X − η(AX)N + a(X)N.

The proof is complete.

Proposition 2. Let M be a hypersurface of a quarter symmetric non metric connection in a

quasi-Sasakian manifold M̄. Then we have the assertions for all X, Y ∈ Γ(TM)

(a) (∇Xa)Y = 0 ⇔ ∇XU = 0, (b) (∇Xη)Y = 0 ⇔ ∇Xξ = 0.

Proof. Let X, Y ∈ Γ(TM). Using (8), (16) (b), (18) (b) and (19) (a) we obtain

g(∇XU, Y) = g(−tAX + η(AtX)ξ, Y) = g(−tAX, Y) + η(AtX)g(ξ, Y)

= g(AX, tY) + η(AtX)η(Y) = (∇Xa)Y,

which proves assertion (a). The assertion (b) is consequence of the fact that ξ is not a killing

vector field.

According to Theorem 2 in [6], the tensor field f̄ = t + η ⊗ U − a ⊗ ξ defines an almost

complex structure on M. Moreover, from Proposition 2 we deduce the following assertion.

Theorem 4. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-

Sasakian manifold M̄. If the tensor fields t, a, η are parallel with respect to the connection ∇,

then f̄ defines a Kahler structure on M.

3 INTEGRABILITY OF DISTRIBUTIONS ON A HYPERSURFACE OF A QUARTER SYMMETRIC NON

METRIC CONNECTION IN A QUASI-SASAKIAN MANIFOLD M̄

In this section we establish conditions for the integrability of all distributions on a hypersur-

face of a quarter symmetric non metric connection M in a quasi-Sasakian manifold M̄. From

Lemma 3 we obtain.

Corollary 1. On a hypersurface of a quarter symmetric non metric connection M of a quasi-

Sasakian manifold M̄ there exists a 2-dimensional foliation determined by the integral distri-

bution D⊥ ⊕ (ξ).

Theorem 5. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-

Sasakian manifold M̄. Then we have the following.

(a) A leaf of D⊥ ⊕ (ξ) is totally geodesic submanifold of M if and only if

(1) AU = a(AU)U + η(AU)ξ − ξ and (2) FN = a(FN)U.

(b) A leaf of D⊥ ⊕ (ξ) is totally geodesic submanifold of M̄ if and only if for all X ∈ Γ(D)

(1) AU = 0 and (2) a(FX) = a(FN)− 1 = 0.
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Proof. (a) Let M∗ be a leaf of integrable distribution D⊥ ⊕ (ξ) and h∗ be the second fundamen-

tal form of the immersion M∗ → M. By using (1) (f) and (7) (b) we get for all X ∈ Γ(TM)

g(h∗(U, U), X) = g(∇̄UU, X) = −g(N, (∇̄U f )X − g(∇̄U N, f X)

= 0 − g(−AU, f X) = g(AU, f X) = g(AU, f X)
(22)

and for all X ∈ Γ(TM)

g(h∗(U, ξ), X) = g(∇̄Uξ, X) = g(−FU + U, X) = g(FN, f X) + a(X), (23)

because g(FU, N) = 0 and f ξ = 0 the assertion (a) follows from (22) and (23).

(b) Let h1 be the second fundamental form of the immersion M∗ → M. It is easy to see that

h1(X, Y) = h∗(X, Y) + B(X, Y)N for all X, Y ∈ Γ(D⊥ ⊕ (ξ)). (24)

From (6) and (8) we deduce

(h1(U, U), N) = g(∇̄UU, N) = a(AU), (25)

g(h1(U, ξ), N) = g(∇̄Uξ, N) = a(FN)− 1. (26)

The assertion (b) follows from (23)–(26).

Theorem 6. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-

Sasakian manifold M̄. Then

(a) the distribution D ⊕ (ξ) is integrable iff for all X, Y ∈ Γ(D)

g(A f X + f AX, Y) = 0, (27)

(b) the distribution D is integrable iff (27) holds and for all X ∈ Γ(D)

FX = η(AtX)U − η(AX)N, (equivalent with FD ⊥ D),

(c) the distribution D ⊕ D⊥ is integrable iff FX = 0 for all X ∈ Γ(D).

Proof. Let X, Y ∈ Γ(D). Since ∇ is a torsion free and ξ is a Killing vector field, we infer

g([X, ξ], U) = g(∇̄Xξ, U)− g(∇̄ξ X, U) = g(∇Xξ, U) + g(∇Uξ, X) = 0. (28)

Using (1) (a), (7) (a) we deduce for all X, Y ∈ Γ(D)

g([X, Y], U) = g(∇̄XY − ∇̄YX, U) = g(∇̄XY − ∇̄YX, f N)

= g(∇̄Y f X − ∇̄X fY, N) = −g(A f X + f AX, Y).
(29)

Next by using (4), (5) (d) and the fact that ∇ is a metric connection we get for all X, Y ∈ Γ(D)

g([X, Y], ξ) = g(∇̄XY, ξ)− g(∇̄YX, ξ) = 2g(FX − f X, Y) = 2g(FX, Y) − 2g( f X, Y). (30)

The assertion (a) follows from (28), (29) and assertion (b) follows from (28)–(30). Using (6) and

(3) we obtain for all X ∈ Γ(D)

g([X, U], ξ) = g(∇̄XU, ξ)− g(∇̄UX, ξ) = 2g(FX, U) − 2g( f X, U). (31)

Taking into account that for all X ∈ Γ(D)

g(FX, N) = g(F f X, f N) = g(F f X, U), (32)

the assertion (c) follows from (30) and (31).
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Theorem 7. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-

Sasakian manifold M̄. Then we have

(a) the distribution D is integrable and its leaves are totally geodesic immersed in M if and

only if for all X ∈ Γ(D)

FD ⊥ D and AX = a(AX)U − η(AX)ξ, (33)

(b) the distribution D ⊕ (ξ) is integrable and its leaves are totally geodesic immersed in if

and only if for X ∈ Γ(D) takes place AX = a(AX)U and FU = 0,

(c) the distribution D ⊕ D⊥ is integrable and its leaves are totally geodesic immersed in M

if and only if for X ∈ Γ(D) takes place FX = 0.

Proof. Let M∗
1 be a leaf of integrable distribution D and h∗1 the second fundamental form of

immersion M∗
1 → M. Then by direct calculation we infer

g(h∗1(X, Y), U) = g(∇̄XY, U) = −g(Y,∇XU) = −g(AX, tY) (34)

and for all X, Y ∈ Γ(D)

g(h∗1 (X, Y), ξ) = g(∇̄XY, ξ) = g(FX, Y) − g( f X, Y). (35)

Now suppose M∗
1 is a totally submanifold of M. Then (33) follows from (34) and (35). Con-

versely suppose that (33) is true. Then using the assertion (b) in Theorem 6 it is easy to see that

the distribution D is integrable. Next the proof follows by using (34) and (35). Next, suppose

that the distribution D ⊕ (ξ) is integrable and its leaves are totally geodesic submanifolds of

M. Let M1 be a leaf of D ⊕ (ξ) and h1 the second fundamental form of immersion M1 → M.

By direct calculations, using (6), (7) (b), (16) (b) and (19) (c), we deduce that for all X, Y ∈ Γ(D)

g(h1(X, Y), U) = g(∇̄XY, U) = −g(AX, tY), (36)

and for all X ∈ Γ(D)

g(h1(X, ξ), U) = g(∇̄Xξ, U) = g(−FU + fU, X) = g(FU, X). (37)

Then the assertion (b) follows from (32), (36), (37) and the assertion (a) of Theorem 6. Next let

M̄1 be a leaf of the integrable distribution D ⊕ D⊥ and h̄1 is the second fundamental form of

the immersion M1 → M. By direct calculation for all X ∈ Γ(D), Y ∈ Γ(D ⊕ D⊥) we get

g(h̄1(X, Y), ξ) = g(FX, Y) − g( f X, Y). (38)

The assertion (c) follows from (3) (c), (32) and (38).

4 CONTACT CONFORMAL CONNECTION ON A HYPERSURFACE OF A QUARTER SYMMETRIC

NON METRIC CONNECTION IN A QUASI-SASAKIAN MANIFOLD M̄

Let the conformal change of the metric tensor ḡ which induces a new metric tensor, given

by ¯̄g(X, Y) = e2p ḡ(X, Y) with regard to this metric, take an affine connection, which satisfies

¯̄∇X ¯̄g(Y, Z) = ∇̄X{e2p ḡ(Y, Z)} = e2p p(X)η(Y)η(Z), (39)
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where p is a scalar point function. The torsion tensor of the connection ¯̄∇ satisfies

T(X, Y) = −2ḡ( f X, Y)U = S(X, Y)− S(Y, X), (40)

where U is a vector field. Let
¯̄∇XY = ∇̄XY + S(X, Y), (41)

where S is a tensor of type (1, 2). Using (39), (40), (41), we have

¯̄∇XY = ∇̄XY + p(X){Y − η(Y)ξ} + p(Y){X − η(X)ξ}

− ḡ( f X, fY)P + u(X) fY + u(Y) f X − ḡ( f X, Y)U,
(42)

where ḡ(P, X) = p(X), ḡ(QX, P) = p( f X) = −q(X), ḡ(Q, X) = q(X), ḡ(U, X) = u(X).

( ¯̄∇X f )(Y) = (∇̄X f )(Y) + {X − η(X)ξ}p( f Y) − p(Y) f X + ḡ( f X, Y)p + ḡ( f X, fY) f P

+ u( fY) f X + u(Y){X − η(X)ξ} − ḡ( f X, fY)U + ḡ( f X, Y) f U = 0.

Using (5), the relation becomes

ḡ(∇̄ f Xξ, Y)ξ − η(Y)∇̄ f X ξ + η(Y)X − η(X)η(Y)ξ − p(Y) f X

+ {X − η(X)ξ}p( f Y) + ḡ( f X, Y)p + ḡ( f X, fY) f P + u( fY) f X

+ u(Y){X − η(X)ξ} − ḡ( f X, fY)U + ḡ( f X, Y) f U = 0.

Contracting with respect to X,

2mη(Y) + 2mp( fY) − 2p( fY) + 2mu(Y)− 2u(Y) + 2η(U)η(Y) = 0,

2(m − 1)p( fY) + 2(m − 1)u(Y) + 2η(Y){m + η(U)} = 0.

If we put η(U) = −1 = u(ξ), then u(Y) = q(Y)− η(Y). Thus (42) takes the form

¯̄∇XY = ∇̄XY + {Y − η(Y)ξ}p(X) + {X − η(X)ξ}p(Y) − ḡ( f X, fY)P

+ {q(X) − η(X)} fY + {q(Y) − η(Y)} f X − ḡ( f X, Y)(Q − ξ).
(43)

Then ¯̄∇Xξ = 0 = ∇̄Xξ + {X − η(X)ξ}p(ξ) − f X. Using (6) in this equation, we have

−FX + f X + ∇̄Xξ + {X − η(X)ξ}p(ξ) − f X = 0,

which implies that FX = {X − η(X)ξ}p(ξ).

Proposition 3. On a hypersurface of a quarter symmetric non metric connection M in a quasi-

Sasakian manifold M̄ the affine connection ¯̄∇ which satisfies (40), is given by (43) with the

conditions u(ξ) = −1 = η(U), FX = {X − η(X)ξ}p(ξ).
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Mat. (N. S.) 1981, 17 (1), 163–170.

[5] Golab S. On semi-symmetric and quarter symmetric linear connections. Tensor (N.S.) 1975, 29 (3), 249–254.

[6] Goldberg S.I., Yano K. On normal globally framed f -manifolds. Tohoku Math. J. 1970, 22 (3), 362–370.

[7] Mishra R.S., Pandey S.N. On quarter symmetric metric F-connections. Tensor (N.S.) 1980, 34 (1), 1–7.

[8] Rahman Sh. Transversal hypersurfaces of almost hyperbolic contact manifolds with a quarter symmetric non metric

connection. TWMS J. Appl. Eng. Math. 2013, 3 (1), 108–116.

[9] Rahman Sh. Characterization of quarter symmetric non metric connection on transversal hypersurface of Lorentzian

para Sasakian manifolds. J. Tensor Soc. 2014, 8, 65–75.

[10] Yano K. On a structure defined by a tensor field f of type (1, 1) satisfying f 3 + f = 0. Tensor (N.S) 1963, 14, 99–109.

Received 29.09.2014

Revised 25.08.2015

Рахман Ш. Геометрiя гiперповерхонь четвертинно симетричного неметричного зв’язку в квазi Са-

сакяновому многовидi // Карпатськi матем. публ. — 2015. — Т.7, №2. — C. 226–235.

Метою цiєї статтi є вивчення поняття CR-пiдмноговидiв та iснування деяких структур на

гiперповерхнi четвертинно симетричного неметричного зв’язку в квазi Сасакяновому много-

видi. Ми дослiджуємо iснування структури Кахлера на M та iснування глобально метричної

конструкцiї f -структури у сенсi Гольдберга С.I., Яно К. [6]. Обговорюється iнтегрованiсть роз-

подiлiв на M i геометрiя їхнiх листкiв. Описано спроби пов’язати цей результат з отриманими

ранiше результатами Гольдберга В., Роска Р., якi присвяченi многовиду Сасакяна та конформ-

ним зв’язкам.

Ключовi слова i фрази: CR-пiдмноговид, квазi Сасакяновий многовид, четвертинно симетри-

чний неметричний зв’язок, умови iнтегрованостi розподiлiв.


