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PALEY–WIENER-TYPE THEOREM FOR POLYNOMIAL ULTRADIFFERENTIABLE

FUNCTIONS

The image of the space of ultradifferentiable functions with compact supports under Fourier-

Laplace transformation is described. An analogue of Paley-Wiener theorem for polynomial ultra-

differentiable functions is proved.
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INTRODUCTION

In general Paley–Wiener theorem is any theorem that relates decay properties of a function

or distribution at infinity with analyticity of its Fourier transform [16]. For example, the Paley–

Wiener theorem for the space of smooth functions with compact supports gives a characte-

rization of its image as rapidly decreasing functions having a holomorphic extension to C of

exponential type.

There are plenty of Paley–Wiener-type theorems since there are many kinds of bound for

decay rates of functions and many types of characterizations of smoothness. In this regard

a wide number of papers have been devoted to the extension of the theory on many other

integral transforms and different classes of functions (see [1–3, 6, 9, 15, 17, 18, 20–22] and the

references given there).

Let G ′
β := G ′

β(R
d) be the space of Roumieu ultradistributions on Rd and Gβ := Gβ(R

d) be its

predual. A Fréchet-Schwartz space (briefly, (FS) space) is one that is Fréchet and Schwartz si-

multaneously (see [23]). It is known (see e.g. [10, 19]) that the spaces G ′
β and Gβ are nuclear

Fréchet-Schwartz and dual Fréchet-Schwartz spaces ((DFS) for short), respectively. These

facts are crucial for our investigation.

In this article we consider Fourier-Laplace transformation, defined on the space Gβ of ultra-

differentiable functions and on the corresponding algebra P(G ′
β) of polynomials over G ′

β [12],

which have the tensor structure of the form
À

f in G
p⊗n
β (see Theorem 1).

We completely describe the image of test space Gβ under Fourier-Laplace transformation

(see Corollary 1 and Theorem 2) and prove Paley–Wiener-type Theorem 3 for polynomial ul-

tradifferentiable functions.
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1 PRELIMINARIES AND NOTATIONS

Let L (X) denote the space of continuous linear operators over a locally convex space X

and let X′ be the dual of X. Throughout, we will endow L (X) and X′ with the locally convex

topology of uniform convergence on bounded subsets of X.

Let ⊗p denote completion of algebraic tensor product with respect to the projective topo-

logy p. Let X p⊗n, n ∈ N, be the symmetric nth tensor degree of X, completed in the projective

tensor topology. Note, that here and subsequently we omit the index p to simplify notations.

For any x ∈ X we denote x⊗n := x ⊗ · · · ⊗ xlooooomooooon
n

∈ X p⊗n, n ∈ N. Set X p⊗0 := C, x⊗0 := 1 ∈ C.

To define the locally convex space Pn(X ′) of n-homogeneous polynomials on X ′ we use

the canonical topological linear isomorphism

Pn(X
′) ≃ (X ′p⊗n)′

described in [4]. Namely, given a functional pn ∈ (X ′p⊗n)′, we define an n-homogeneous poly-

nomial Pn ∈ Pn(X ′) by Pn(x) := pn(x⊗n), x ∈ X ′. We equip Pn(X ′) with the locally convex

topology b of uniform convergence on bounded sets in X ′. Set P0(X
′) := C. The space P(X ′)

of all continuous polynomials on X ′ is defined to be the complex linear span of all Pn(X ′),

n ∈ Z+, endowed with the topology b. Denote

Γ(X ) :=
à

f in
n∈Z+

X
p⊗n ⊂

à

n∈Z+

X
p⊗n.

Note, that we consider only the case when the elements of direct sum consist of finite but not

fixed number of addends. For simplicity of notation we write Γ(X ) instead of commonly used

Γ f in(X ).

We have the following assertion (see also [12, Proposition 2.1]).

Theorem 1. There exists the linear topological isomorphism

ΥX : Γ(X ) −→ P(X ′)

for any nuclear (F) or (DF) space X .

Let A : X −→ Y be any linear and continuous operator, where X, Y are locally convex

spaces. It is easy to see, that the operator A ⊗ IY, defined on the tensor product X ⊗ Y by the

formula

(A ⊗ IY)(x ⊗ y) := Ax ⊗ y, x ∈ X, y ∈ Y,

is linear, where IY denotes the identity on Y. The operator A ⊗ IY is continuous in projective

topology p and it has a unique extension to linear continuous operator onto the space X ⊗p Y.

The following assertion essentially will be used in the proof of Theorem 3.

Proposition 1 ([13]). For any nuclear (F) or (DF) spaces X, Y, and any operator A ∈ L (X, Y)

the following equality holds

ker(A ⊗ IY) = ker(A)⊗p Y.
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2 SPACES OF FUNCTIONS

Let us consider the definition and some properties of the space of Gevrey ultradifferen-

tiable functions with compact supports. For more details we refer the reader to [10, 11].

We use the following notations: tk := tk1
1 · . . . · tkd

d , kkβ := k
k1β
1 · . . . · k

kdβ
d , |k| := k1 + · · ·+ kd

for all t = (t1, . . . , td) ∈ R
d(or C

d), k = (k1, . . . , kd) ∈ Z
d
+ and β > 1. Let ∂k := ∂k1

1 . . . ∂
kd
d , where

∂
k j

j := ∂k j/∂t
k j

j , j = 1, . . . , d. The notation µ ≺ ν with µ, ν ∈ Rd means that µ1 < ν1, . . . , µd < νd

(similarly, µ ≻ ν). Let [µ, ν] := [µ1, ν1]× . . . × [µd, νd] and (µ, ν) := (µ1, ν1)× . . . × (µd, νd) for

any µ ≺ ν. In the following t ∈ [µ, ν] means that tj ∈ [µj, νj] and t → ∞ (resp. t → 0) means

that tj → ∞ (resp. tj → 0) for all j = 1, . . . , d.

A complex infinitely smooth function ϕ on Rd is called a Gevrey ultradifferentiable with

β > 1 (see [10, II.2.1]) if for every [µ, ν] ⊂ R
d there exist constants h > 0 and C > 0 such that

sup
t∈[µ,ν]

|∂k ϕ(t)| ≤ Ch|k|kkβ (1)

holds for all k ∈ Zd
+.

For a fixed h > 0, consider the subspace Gh
β[µ, ν] of all functions supported by [µ, ν] ⊂ Rd

and such that there exists a constant C = C(ϕ) > 0, that inequality (1) holds for all k ∈

Z
d
+. Therefore, the space of ultradifferentiable functions with compact supports is defined as

follows

Gh
β[µ, ν] :=

{

ϕ ∈ C∞(Rd) : supp ϕ ⊂ [µ, ν], ‖ϕ‖Gh
β [µ,ν] < ∞

}

,

with the norm

‖ϕ‖Gh
β [µ,ν] := sup

k∈Zd
+

sup
t∈[µ,ν]

|∂k ϕ(t)|

h|k|kkβ
.

Proposition 2 ([10]). Each Gh
β[µ, ν] is a Banach space, and all inclusions Gh

β[µ, ν] # G l
β[µ, ν] with

h < l are compact. Moreover, if [µ, ν] ⊂ [µ′, ν′], then Gh
β[µ, ν] is closed subspace in Gh

β[µ
′, ν′].

This proposition implies that the set of Banach spaces

{

Gh
β[µ, ν] : [µ, ν] ⊂ R

d, h > 0
}

is partially ordered. Therefore we can consider this set as inductive system with respect to

stated above compact inclusions. Hence, we define the space

Gβ(R
d) :=

ď

µ≺ν, h>0

Gh
β[µ, ν], Gβ(R

d) ≃ lim ind
µ≺ν, h>0

Gh
β[µ, ν],

and endow it with the topology of inductive limit.

The strong dual space G ′
β(R

d) is called the space of Roumieu ultradistributions on R
d.

Proposition 3 ([10]). The spaces Gβ(R
d) and G ′

β(R
d) are nonempty locally convex nuclear re-

flexive spaces. Moreover, Gβ(R
d) is (DFS) space, and G ′

β(R
d) is (FS) space.

Next define the space of entire functions of exponential type, which will be an image of the

space Gβ(R
d) under the Fourier-Laplace transformation (see Section 3).
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Let M be a set in Rd. The support function of the set M is defined to be a function

HM(x) = sup
t∈M

(t, x), x ∈ R
d,

where (t, x) := t1x1 + · · · + tdxd denotes the scalar product. It is known [7], that HM(η) is

convex, lower semi-continuous function, that may take the value +∞. If M is bounded set,

then its support function is continuous.

Let Br ⊂ Cd be a ball of a radius r > 0. The space E(Cd) of entire functions of exponential

type we will endow with locally convex topology of uniform convergence on compact sets.

This topology can be defined by the system of seminorms

pr,M(ψ) := sup
z∈Br

|ψ(z)|e−HM (η),

where η = (η1, . . . , ηd) ∈ Rd is imaginary part of z = (z1, . . . , zd) ∈ Cd.

Fix an arbitrary real β > 1. For a positive number h > 0 and vectors µ = (µ1, . . . , µd),

ν = (ν1, . . . , νd) ∈ R
d, such that µ ≺ ν, in the space of entire functions of exponential type we

define the subspace Eh
β[µ, ν] of functions Cd ∋ z 7−→ ψ(z) ∈ C with finite norm

‖ψ‖Eh
β [µ,ν] := sup

k∈Zd
+

sup
z∈Cd

|zkψ(z)e−H[µ,ν](η)|

h|k|kkβ
. (2)

Since for any r > 0 and ψ ∈ Eh
β[µ, ν] the next inequality pr,[µ,ν](ψ) ≤ ‖ψ‖Eh

β [µ,ν] is valid, then all

inclusions Eh
β[µ, ν] # E(Cd) are continuous.

Proposition 4. Each space Eh
β[µ, ν] is Banach space, and all inclusions

Eh
β[µ, ν] # Eh′

β [µ
′, ν′] with [µ, ν] ⊂ [µ′, ν′], h < h′,

are compact.

Proof. Let us prove the completeness of the space Eh
β[µ, ν]. Let {ψm}m∈N be a Cauchy sequence

in Eh
β[µ, ν]. It means that for every ε > 0 there exists an integer Nε ∈ N such that ∀ m, n > Nε

the next inequality ‖ψm − ψn‖Eh
β [µ,ν] < ε is valid.

The following inequality

sup
z∈Br

|zkψ(z)|

h|k|kkβ
e−H[µ,ν](η) ≤ ‖ψ‖Eh

β [µ,ν], ψ ∈ Eh
β[µ, ν],

is obvious for all k ∈ Z
d
+ and r > 0. It follows that {ϕm}m∈N, where ϕm(z) :=

zkψm(z)

h|k|kkβ
, is

fundamental sequence in the space of entire functions of exponential type. Therefore for any

k ∈ Z
d
+ and r > 0 we have

sup
z∈Br

|zk(ψm(z)− ψn(z))|

h|k|kkβ
e−H[µ,ν](η) < ε, ∀ m, n > Nε. (3)
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Since {ϕm}m∈N is fundamental sequence, it is bounded in E(Cd). From the Bernstein theorem

on compactness [14, theorem 3.3.6] it follows that there exist a subsequence {ϕkm
}km∈N and a

function ϕ ∈ E(Cd) such that the following equality is satisfied

lim
km→∞

sup
z∈Br

|zk(ψkm
(z)− ψ(z))|

h|k|kkβ
e−H[µ,ν](η) = 0, k ∈ Z

d
+, r > 0.

Let us pass to the limit in (3) as m = km → ∞. Consequently, for all k ∈ Zd
+ and r > 0 we

obtain the inequality

sup
z∈Br

|zk(ψ(z)− ψn(z))|

h|k|kkβ
e−H[µ,ν](η) < ε,

which satisfies for all n > Nε. Hence from the triangle inequality we obtain

sup
z∈Br

|zkψ(z)|

h|k|kkβ
e−H[µ,ν](η) ≤ sup

z∈Br

|zkψn0(z)|

h|k|kkβ
e−H[µ,ν](η) + ε,

where n0 = Nε + 1.

Taking a supremum over k and r in the above inequality, we obtain

‖ψ‖Eh
β [µ,ν] ≤ ‖ψn0‖Eh

β [µ,ν] + ε,

therefore ψ ∈ Eh
β[µ, ν]. Hence, the space Eh

β[µ, ν] is complete.

The compactness of inclusions Eh
β[µ, ν] # Eh′

β [µ
′, ν′] with [µ, ν] ⊂ [µ′, ν′], h < h′ follows

from obvious inequality e
−H[µ′,ν′] ≤ e−H[µ,ν] and from [10, pp. 38–40].

Define the space

Eβ(C
d) :=

ď

µ≺ν, h>0

Eh
β[µ, ν], Eβ(C

d) ≃ lim ind
µ≺ν, h>0

Eh
β[µ, ν],

and endow it with the topology of inductive limit with respect to compact inclusions from the

Proposition 4.

In what follows to simplify the notations we will write Gβ := Gβ(R
d), G ′

β := G ′
β(R

d),

Eβ := Eβ(C
d), E′

β := E′
β(C

d).

3 FOURIER-LAPLACE TRANSFORM AND PALEY–WIENER-TYPE THEOREM

Consider the inductive limits of Banach spaces

Eβ[µ, ν] :=
ď

h>0

Gh
β[µ, ν], Eβ[µ, ν] ≃ lim ind

h→∞

Gh
β[µ, ν],

and

Gβ[µ, ν] :=
ď

h>0

Gh
β[µ, ν], Gβ[µ, ν] ≃ lim ind

h→∞

Gh
β[µ, ν].

On the space Gβ we define the Fourier-Laplace transform

pϕ(z) := (Fϕ)(z) =

ż

Rd
e−i(t,z)ϕ(t) dt, ϕ ∈ Gβ, z ∈ C

d. (4)

Our main task is to show, that the function pϕ(z) belongs to the space Eβ, moreover, we

will prove that the mapping F : Gβ −→ Eβ is surjective. For this end we prove the following

auxiliary statement, which can be found in [8, Lemma 1], but our proof is different.
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Proposition 5. The image of the space Gβ[µ, ν] with respect to mapping F is the space Eβ[µ, ν].

Proof. Let ϕ ∈ Gβ[µ, ν]. Properties of the Fourier transform imply y∂k ϕ(z) = zk pϕ(z) for all

k ∈ Z
d
+. Therefore for any z and k we have

|zk pϕ(z)| =
∣

∣

∣

ż

Rd
e−i(t,z)∂k ϕ(t) dt

∣

∣

∣
≤

ż

[µ,ν]
|e−i(t,ξ)e(t,η)∂k ϕ(t)| dt

≤ h|k|kkβeH[µ,ν](η)‖ϕ‖Gh
β [µ,ν]

ż

[µ,ν]
dt.

It follows

‖pϕ‖Eh
β [µ,ν] ≤ C‖ϕ‖Gh

β [µ,ν], (5)

where C =
śd

j=1(νj − µj). Hence, F(Gh
β[µ, ν]) ⊂ Eh

β[µ, ν].

Vice versa. Let ψ ∈ Eh
β[µ, ν]. It is known, that the norm of the space Eh

β[µ, ν] can be defined

by the formula

‖ψ‖Eh
β [µ,ν] := sup

k∈Zd
+

sup
z∈Cd

|zkψ(z)e−H[µ,ν](η)|

h|k||k|!β
,

moreover, the topology, defined by this norm, is equivalent to earlier defined (see (2)). It fol-

lows that for each function ψ ∈ Eh
β[µ, ν] there exists a constant C such that the inequality

|zkψ(z)| ≤ Ch|k||k|!βeH[µ,ν](η) (6)

holds for all z ∈ C
d.

The following inequality

eβt1/β
=

(

et1/β)β
=

(
∞ÿ

m=0

tm/β

m!

)β
≥

|t|m

m!β
,

holds for all t ∈ R and m ∈ Z+. In particular, for t = |z|/h and m = |k|, we obtain

eβ
(

|z|
h

)1/β

≥
|z||k|

h|k||k|!β
.

Hence from the inequality |zk| ≤ |z||k| it follows

h|k||k|!β

|zk|
eH[µ,ν](η) ≥

eH[µ,ν](η)

e(L|z|)1/β
,

where L = ββ

h . So, if the function ψ satisfies the inequality (6), i.e. belongs to the space Eh
β[µ, ν],

then it satisfies the inequality

|ψ(z)| ≤ Ce−(L|z|)1/β+H[µ,ν](η).

From the theorem [10, theorem 2.22] it follows that there exists a function ϕ ∈ Gβ[µ, ν] such

that pϕ = ψ, i.e. Eh
β[µ, ν] ⊂ F(Gh

β[µ, ν]).

Hence, we have proved F(Gh
β[µ, ν]) = Eh

β[µ, ν]. Since the constant h > 0 is arbitrary, prop-

erties of inductive limit imply the desired equality

F(Gβ[µ, ν]) = Eβ[µ, ν].
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The immediate consequence of the Proposition 5 and of the properties of inductive limit is

the following assertion.

Corollary 1. The image of the space Gβ with respect to mapping F is the space Eβ.

Therefore, we may consider the adjoint mapping F′ : E′
β −→ G ′

β.

Theorem 2. There exist the following topological isomorphisms

F(Gβ) ≃ Eβ and F′(E′
β) ≃ G ′

β.

Proof. The inequality (5) implies, that the mapping

F : Gβ[µ, ν] ∋ ϕ 7−→ pϕ ∈ Eβ[µ, ν]

is continuous. From the Proposition 5 we obtain the surjectivity of the map. Therefore,

the open map theorem [5, theorem 6.7.2] implies the topological isomorphism F(Gβ[µ, ν]) ≃

Eβ[µ, ν]. Since the segment [µ, ν] is arbitrary, the properties of inductive limit imply the desired

topological isomorphisms.

Using the Theorem 1 and a tensor structure of the space

Γ(Gβ) :=
à

f in
n∈Z+

G
p⊗n
β ⊂

à

n∈Z+

G
p⊗n
β ,

we extend the mapping F to the mapping F⊗, that defined on Γ(Gβ).

At first, take an element ϕ⊗n ∈ G
p⊗n
β , with ϕ ∈ Gβ, from the total subset of G

p⊗n
β . Define the

operator F⊗n as follows

F⊗n : ϕ⊗n 7−→ pϕ⊗n and F⊗0 := IC,

where pϕ⊗n := (Fϕ)⊗n. Next, we extend the map F⊗n onto whole space G
p⊗n
β by linearity and

continuity. So, we obtain F⊗n ∈ L
(

G
p⊗n
β , E

p⊗n
β

)

. Finally, we define F⊗ as the mapping

F⊗ :=
(

F⊗n
)

: Γ(Gβ) ∋ p :=
(

pn

)

7−→ pp :=
(ppn

)

∈ Γ(Eβ), (7)

where pn ∈ G
p⊗n
β , ppn := F⊗n pn ∈ E

p⊗n
β .

The following commutative diagram

P(G ′
β)

Υ
−1
Gβ

��

F⊗
P // P(E′

β)

Γ(Gβ)
F⊗

// Γ(Eβ)

ΥEβ

OO
(8)

uniquely defines the operator F⊗
P : P(G ′

β) −→ P(E′
β). The map F⊗

P we will call the polynomial

Fourier-Laplace transformation.

We proved above that the mappings F : Gβ −→ Eβ and F′ : E′
β −→ G ′

β are topological

isomorphisms. Let us prove the analogue of this result. The next theorem may be considered

as Paley–Wiener-type theorem.
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Theorem 3. Polynomial Fourier-Laplace transformation is topological isomorphism from the

algebra P(G ′
β) into the algebra P(E′

β).

Proof. From the Theorem 1 and commutativity of the diagram (8) it follows that it is enough

to show that the mapping F⊗ : Γ(Gβ) −→ Γ(Eβ) is topological isomorphism.

Theorem 2 and Corollary 1 imply the following equalities

ker F = {0}, ker F−1 = {0}.

Let us consider the operators

IGβ
⊗ F : Gβ ⊗ Gβ −→ Gβ ⊗ Eβ, F ⊗ IEβ

: Gβ ⊗ Eβ −→ Eβ ⊗ Eβ,

IEβ
⊗ F−1 : Eβ ⊗ Eβ −→ Eβ ⊗ Gβ, F−1 ⊗ IGβ

: Eβ ⊗ Gβ −→ Gβ ⊗ Gβ.

Since spaces Gβ and Eβ are nuclear (DF) spaces, Proposition 1 implies the equalities

ker(IGβ
⊗ F) = {0}, ker(F ⊗ IEβ

) = {0},

ker(IEβ
⊗ F−1) = {0}, ker(F−1 ⊗ IGβ

) = {0}.

Therefore, compositions of these operators have the trivial kernels, i.e.

ker
(

(F ⊗ IEβ
) ◦ (IGβ

⊗ F)
)

= ker(F ⊗ F) = {0},

ker
(

(F−1 ⊗ IGβ
) ◦ (IEβ

⊗ F−1)
)

= ker(F−1 ⊗ F−1) = {0}.

Proceeding inductively finite times, we obtain

ker F⊗n = ker
(

F ⊗ · · · ⊗ Flooooomooooon
n

)

= {0},

ker(F−1)⊗n = ker
(

F−1 ⊗ · · · ⊗ F−1looooooooomooooooooon
n

)

= {0},

for all natural n. Note, that the mappings F⊗n, (F−1)⊗n are continuous as tensor products of

continuous operators. Since (F⊗n)−1 = (F−1)⊗n, the mapping F⊗n : G
p⊗n
β −→ E

p⊗n
β is topolo-

gical isomorphism. Finally, the map F⊗ : Γ(Gβ) −→ Γ(Eβ) is topological isomorphism via the

properties of direct sum topology.
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У статтi описано образ простору ультрадиференцiйовних функцiй з компактними носiями

вiдносно перетворення Фур’є-Лапласа. Доведено аналог теореми Пелi-Вiнера для полiномi-

альних ультрадиференцiйовних функцiй.
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