Sharyn S.V.

PALEY-WIENER-TYPE THEOREM FOR POLYNOMIAL ULTRADIFFERENTIABLE FUNCTIONS

Abstract

The image of the space of ultradifferentiable functions with compact supports under FourierLaplace transformation is described. An analogue of Paley-Wiener theorem for polynomial ultradifferentiable functions is proved.

Key words and phrases: ultradifferentiable function, ultradistribution, polynomial test function, Paley-Wiener-type theorem.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: sharyn.sergii@gmail.com

Introduction

In general Paley-Wiener theorem is any theorem that relates decay properties of a function or distribution at infinity with analyticity of its Fourier transform [16]. For example, the PaleyWiener theorem for the space of smooth functions with compact supports gives a characterization of its image as rapidly decreasing functions having a holomorphic extension to \mathbb{C} of exponential type.

There are plenty of Paley-Wiener-type theorems since there are many kinds of bound for decay rates of functions and many types of characterizations of smoothness. In this regard a wide number of papers have been devoted to the extension of the theory on many other integral transforms and different classes of functions (see [1-3, $6,9,15,17,18,20-22]$ and the references given there).

Let $\mathcal{G}_{\beta}^{\prime}:=\mathcal{G}_{\beta}^{\prime}\left(\mathbb{R}^{d}\right)$ be the space of Roumieu ultradistributions on \mathbb{R}^{d} and $\mathcal{G}_{\beta}:=\mathcal{G}_{\beta}\left(\mathbb{R}^{d}\right)$ be its predual. A Fréchet-Schwartz space (briefly, (FS) space) is one that is Fréchet and Schwartz simultaneously (see [23]). It is known (see e.g. [10,19]) that the spaces $\mathcal{G}_{\beta}^{\prime}$ and \mathcal{G}_{β} are nuclear Fréchet-Schwartz and dual Fréchet-Schwartz spaces ((DFS) for short), respectively. These facts are crucial for our investigation.

In this article we consider Fourier-Laplace transformation, defined on the space \mathcal{G}_{β} of ultradifferentiable functions and on the corresponding algebra $\mathcal{P}\left(\mathcal{G}_{\beta}^{\prime}\right)$ of polynomials over $\mathcal{G}_{\beta}^{\prime}$ [12], which have the tensor structure of the form $\oplus_{f i n} \mathcal{G}_{\beta}^{\widehat{\otimes} n}$ (see Theorem 1).

We completely describe the image of test space \mathcal{G}_{β} under Fourier-Laplace transformation (see Corollary 1 and Theorem 2) and prove Paley-Wiener-type Theorem 3 for polynomial ultradifferentiable functions.

[^0]
1 Preliminaries and notations

Let $\mathscr{L}(X)$ denote the space of continuous linear operators over a locally convex space X and let X^{\prime} be the dual of X. Throughout, we will endow $\mathscr{L}(X)$ and X^{\prime} with the locally convex topology of uniform convergence on bounded subsets of X.

Let $\otimes_{\mathfrak{p}}$ denote completion of algebraic tensor product with respect to the projective topo$\operatorname{logy} \mathfrak{p}$. Let $X^{\otimes \otimes n}, n \in \mathbb{N}$, be the symmetric nth tensor degree of X, completed in the projective tensor topology. Note, that here and subsequently we omit the index \mathfrak{p} to simplify notations. For any $x \in X$ we denote $x^{\otimes n}:=\underbrace{x \otimes \cdots \otimes x}_{n} \in X^{\otimes n}, n \in \mathbb{N}$. Set $X^{\widehat{\otimes} 0}:=\mathbb{C}, x^{\otimes 0}:=1 \in \mathbb{C}$.

To define the locally convex space $\mathcal{P}_{n}\left(\mathcal{X}^{\prime}\right)$ of n-homogeneous polynomials on \mathcal{X}^{\prime} we use the canonical topological linear isomorphism

$$
\mathcal{P}_{n}\left(\mathcal{X}^{\prime}\right) \simeq\left(\mathcal{X}^{\prime \otimes} n\right)^{\prime}
$$

described in [4]. Namely, given a functional $p_{n} \in\left(\mathcal{X}^{\prime \otimes} n\right)^{\prime}$, we define an n-homogeneous polynomial $P_{n} \in \mathcal{P}_{n}\left(\mathcal{X}^{\prime}\right)$ by $P_{n}(x):=p_{n}\left(x^{\otimes n}\right), x \in \mathcal{X}^{\prime}$. We equip $\mathcal{P}_{n}\left(\mathcal{X}^{\prime}\right)$ with the locally convex topology \mathfrak{b} of uniform convergence on bounded sets in \mathcal{X}^{\prime}. Set $\mathcal{P}_{0}\left(\mathcal{X}^{\prime}\right):=\mathbb{C}$. The space $\mathcal{P}\left(\mathcal{X}^{\prime}\right)$ of all continuous polynomials on \mathcal{X}^{\prime} is defined to be the complex linear span of all $\mathcal{P}_{n}\left(\mathcal{X}^{\prime}\right)$, $n \in \mathbb{Z}_{+}$, endowed with the topology \mathfrak{b}. Denote

$$
\Gamma(\mathcal{X}):=\bigoplus_{n \in \mathbb{Z}_{+}} \mathcal{X}^{\widehat{\otimes} n} \subset \bigoplus_{n \in \mathbb{Z}_{+}} \mathcal{X}^{\hat{\otimes} n}
$$

Note, that we consider only the case when the elements of direct sum consist of finite but not fixed number of addends. For simplicity of notation we write $\Gamma(\mathcal{X})$ instead of commonly used $\Gamma_{\text {fin }}(\mathcal{X})$.

We have the following assertion (see also [12, Proposition 2.1]).
Theorem 1. There exists the linear topological isomorphism

$$
\mathrm{Y}_{\mathcal{X}}: \Gamma(\mathcal{X}) \longrightarrow \mathcal{P}\left(\mathcal{X}^{\prime}\right)
$$

for any nuclear (F) or (DF) space \mathcal{X}.
Let $A: X \longrightarrow Y$ be any linear and continuous operator, where X, Y are locally convex spaces. It is easy to see, that the operator $A \otimes I_{Y}$, defined on the tensor product $X \otimes Y$ by the formula

$$
\left(A \otimes I_{Y}\right)(x \otimes y):=A x \otimes y, \quad x \in X, \quad y \in Y
$$

is linear, where I_{Y} denotes the identity on Y. The operator $A \otimes I_{Y}$ is continuous in projective topology \mathfrak{p} and it has a unique extension to linear continuous operator onto the space $X \otimes_{\mathfrak{p}} Y$.

The following assertion essentially will be used in the proof of Theorem 3.
Proposition 1 ([13]). For any nuclear (F) or $(D F)$ spaces X, Y, and any operator $A \in \mathscr{L}(X, Y)$ the following equality holds

$$
\operatorname{ker}\left(A \otimes I_{Y}\right)=\operatorname{ker}(A) \otimes_{\mathfrak{p}} Y
$$

2 Spaces of functions

Let us consider the definition and some properties of the space of Gevrey ultradifferentiable functions with compact supports. For more details we refer the reader to [10,11].

We use the following notations: $t^{k}:=t_{1}^{k_{1}} \cdot \ldots \cdot t_{d}^{k_{d}}, k^{k \beta}:=k_{1}^{k_{1} \beta} \cdot \ldots \cdot k_{d}^{k_{k} \beta},|k|:=k_{1}+\cdots+k_{d}$ for all $t=\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}\left(\right.$ or $\left.\mathbb{C}^{d}\right), k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}_{+}^{d}$ and $\beta>1$. Let $\partial^{k}:=\partial_{1}^{k_{1}} \ldots \partial_{d}^{k_{d}}$, where $\partial_{j}^{k_{j}}:=\partial^{k_{j}} / \partial t_{j}^{k_{j}}, j=1, \ldots, d$. The notation $\mu \prec v$ with $\mu, v \in \mathbb{R}^{d}$ means that $\mu_{1}<\nu_{1}, \ldots, \mu_{d}<v_{d}$ (similarly, $\mu \succ v$). Let $[\mu, v]:=\left[\mu_{1}, v_{1}\right] \times \ldots \times\left[\mu_{d}, v_{d}\right]$ and $(\mu, v):=\left(\mu_{1}, v_{1}\right) \times \ldots \times\left(\mu_{d}, v_{d}\right)$ for any $\mu \prec v$. In the following $t \in[\mu, v]$ means that $t_{j} \in\left[\mu_{j}, v_{j}\right]$ and $t \rightarrow \infty$ (resp. $t \rightarrow 0$) means that $t_{j} \rightarrow \infty$ (resp. $t_{j} \rightarrow 0$) for all $j=1, \ldots, d$.

A complex infinitely smooth function φ on \mathbb{R}^{d} is called a Gevrey ultradifferentiable with $\beta>1$ (see [10, II.2.1]) if for every $[\mu, v] \subset \mathbb{R}^{d}$ there exist constants $h>0$ and $C>0$ such that

$$
\begin{equation*}
\sup _{t \in[\mu, v]}\left|\partial^{k} \varphi(t)\right| \leq C h^{|k|} k^{k \beta} \tag{1}
\end{equation*}
$$

holds for all $k \in \mathbb{Z}_{+}^{d}$.
For a fixed $h>0$, consider the subspace $\mathcal{G}_{\beta}^{h}[\mu, v]$ of all functions supported by $[\mu, v] \subset \mathbb{R}^{d}$ and such that there exists a constant $C=C(\varphi)>0$, that inequality (1) holds for all $k \in$ \mathbb{Z}_{+}^{d}. Therefore, the space of ultradifferentiable functions with compact supports is defined as follows

$$
\mathcal{G}_{\beta}^{h}[\mu, \nu]:=\left\{\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right): \operatorname{supp} \varphi \subset[\mu, \nu],\|\varphi\|_{\mathcal{G}_{\beta}^{h}[\mu, v]}<\infty\right\}
$$

with the norm

$$
\|\varphi\|_{\mathcal{G}_{\beta}^{d}[\mu, v]}:=\sup _{k \in \mathbb{Z}_{+}^{d}} \sup _{t \in[\mu, v]} \frac{\left|\partial^{k} \varphi(t)\right|}{h^{|k|} k^{k \beta}} .
$$

Proposition 2 ([10]). Each $\mathcal{G}_{\beta}^{h}[\mu, v]$ is a Banach space, and all inclusions $\mathcal{G}_{\beta}^{h}[\mu, \nu] \leftrightarrow \mathcal{G}_{\beta}^{l}[\mu, v]$ with $h<l$ are compact. Moreover, if $[\mu, v] \subset\left[\mu^{\prime}, \nu^{\prime}\right]$, then $\mathcal{G}_{\beta}^{h}[\mu, v]$ is closed subspace in $\mathcal{G}_{\beta}^{h}\left[\mu^{\prime}, \nu^{\prime}\right]$.

This proposition implies that the set of Banach spaces

$$
\left\{\mathcal{G}_{\beta}^{h}[\mu, v]:[\mu, v] \subset \mathbb{R}^{d}, h>0\right\}
$$

is partially ordered. Therefore we can consider this set as inductive system with respect to stated above compact inclusions. Hence, we define the space

$$
\mathcal{G}_{\beta}\left(\mathbb{R}^{d}\right):=\bigcup_{\mu \prec v, h>0} \mathcal{G}_{\beta}^{h}[\mu, v], \quad \mathcal{G}_{\beta}\left(\mathbb{R}^{d}\right) \simeq \operatorname{limind}_{\mu \prec v, h>0} \mathcal{G}_{\beta}^{h}[\mu, v],
$$

and endow it with the topology of inductive limit.
The strong dual space $\mathcal{G}_{\beta}^{\prime}\left(\mathbb{R}^{d}\right)$ is called the space of Roumieu ultradistributions on \mathbb{R}^{d}.
Proposition 3 ([10]). The spaces $\mathcal{G}_{\beta}\left(\mathbb{R}^{d}\right)$ and $\mathcal{G}_{\beta}^{\prime}\left(\mathbb{R}^{d}\right)$ are nonempty locally convex nuclear reflexive spaces. Moreover, $\mathcal{G}_{\beta}\left(\mathbb{R}^{d}\right)$ is (DFS) space, and $\mathcal{G}_{\beta}^{\prime}\left(\mathbb{R}^{d}\right)$ is (FS) space.

Next define the space of entire functions of exponential type, which will be an image of the space $\mathcal{G}_{\beta}\left(\mathbb{R}^{d}\right)$ under the Fourier-Laplace transformation (see Section 3).

Let M be a set in \mathbb{R}^{d}. The support function of the set M is defined to be a function

$$
H_{M}(x)=\sup _{t \in M}(t, x), \quad x \in \mathbb{R}^{d}
$$

where $(t, x):=t_{1} x_{1}+\cdots+t_{d} x_{d}$ denotes the scalar product. It is known [7], that $H_{M}(\eta)$ is convex, lower semi-continuous function, that may take the value $+\infty$. If M is bounded set, then its support function is continuous.

Let $B_{r} \subset \mathbb{C}^{d}$ be a ball of a radius $r>0$. The space $E\left(\mathbb{C}^{d}\right)$ of entire functions of exponential type we will endow with locally convex topology of uniform convergence on compact sets. This topology can be defined by the system of seminorms

$$
p_{r, M}(\psi):=\sup _{z \in B_{r}}|\psi(z)| e^{-H_{M}(\eta)},
$$

where $\eta=\left(\eta_{1}, \ldots, \eta_{d}\right) \in \mathbb{R}^{d}$ is imaginary part of $z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}^{d}$.
Fix an arbitrary real $\beta>1$. For a positive number $h>0$ and vectors $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right)$, $v=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}^{d}$, such that $\mu \prec v$, in the space of entire functions of exponential type we define the subspace $E_{\beta}^{h}[\mu, \nu]$ of functions $\mathbb{C}^{d} \ni z \longmapsto \psi(z) \in \mathbb{C}$ with finite norm

$$
\begin{equation*}
\|\psi\|_{E_{\beta}^{h}[\mu, v]}:=\sup _{k \in \mathbb{Z}_{+}^{d}} \sup _{z \in \mathbb{C}^{d}} \frac{\left|z^{k} \psi(z) e^{-H_{[\mu, v]}(\eta)}\right|}{h^{|k|} \mid k^{k \beta}} . \tag{2}
\end{equation*}
$$

Since for any $r>0$ and $\psi \in E_{\beta}^{h}[\mu, v]$ the next inequality $p_{r,[\mu, v]}(\psi) \leq\|\psi\|_{E_{\beta}^{h}[\mu, v]}$ is valid, then all inclusions $E_{\beta}^{h}[\mu, \nu] \rightarrow E\left(\mathbb{C}^{d}\right)$ are continuous.

Proposition 4. Each space $E_{\beta}^{h}[\mu, v]$ is Banach space, and all inclusions

$$
E_{\beta}^{h}[\mu, v] \leftrightarrow E_{\beta}^{h^{\prime}}\left[\mu^{\prime}, \nu^{\prime}\right] \quad \text { with } \quad[\mu, v] \subset\left[\mu^{\prime}, \nu^{\prime}\right], h<h^{\prime},
$$

are compact.
Proof. Let us prove the completeness of the space $E_{\beta}^{h}[\mu, v]$. Let $\left\{\psi_{m}\right\}_{m \in \mathbb{N}}$ be a Cauchy sequence in $E_{\beta}^{h}[\mu, v]$. It means that for every $\varepsilon>0$ there exists an integer $N_{\varepsilon} \in \mathbb{N}$ such that $\forall m, n>N_{\varepsilon}$ the next inequality $\left\|\psi_{m}-\psi_{n}\right\|_{E_{\beta}^{h}[\mu, \nu]}<\varepsilon$ is valid.

The following inequality

$$
\sup _{z \in B_{r}} \frac{\left|z^{k} \psi(z)\right|}{h^{|k|} k^{k \beta}} e^{-H_{[\mu, v]}(\eta)} \leq\|\psi\|_{E_{\beta}^{h}[\mu, \nu]}, \quad \psi \in E_{\beta}^{h}[\mu, v],
$$

is obvious for all $k \in \mathbb{Z}_{+}^{d}$ and $r>0$. It follows that $\left\{\varphi_{m}\right\}_{m \in \mathbb{N}}$, where $\varphi_{m}(z):=\frac{z^{k} \psi_{m}(z)}{h^{|k|} k^{k \beta}}$, is fundamental sequence in the space of entire functions of exponential type. Therefore for any $k \in \mathbb{Z}_{+}^{d}$ and $r>0$ we have

$$
\begin{equation*}
\sup _{z \in B_{r}} \frac{\left|z^{k}\left(\psi_{m}(z)-\psi_{n}(z)\right)\right|}{h^{|k|} k^{k \beta}} e^{-H_{[\mu, v]}(\eta)}<\varepsilon, \quad \forall m, n>N_{\varepsilon} . \tag{3}
\end{equation*}
$$

Since $\left\{\varphi_{m}\right\}_{m \in \mathbb{N}}$ is fundamental sequence, it is bounded in $E\left(\mathbb{C}^{d}\right)$. From the Bernstein theorem on compactness [14, theorem 3.3.6] it follows that there exist a subsequence $\left\{\varphi_{k_{m}}\right\}_{k_{m} \in \mathbb{N}}$ and a function $\varphi \in E\left(\mathbb{C}^{d}\right)$ such that the following equality is satisfied

$$
\lim _{k_{m} \rightarrow \infty} \sup _{z \in B_{r}} \frac{\left|z^{k}\left(\psi_{k_{m}}(z)-\psi(z)\right)\right|}{h^{|k|} k^{k \beta}} e^{-H_{[\mu, v]}(\eta)}=0, \quad k \in \mathbb{Z}_{+}^{d}, \quad r>0
$$

Let us pass to the limit in (3) as $m=k_{m} \rightarrow \infty$. Consequently, for all $k \in \mathbb{Z}_{+}^{d}$ and $r>0$ we obtain the inequality

$$
\sup _{z \in B_{r}} \frac{\left|z^{k}\left(\psi(z)-\psi_{n}(z)\right)\right|}{h^{|k|} k^{k \beta}} e^{-H_{[\mu, v]}(\eta)}<\varepsilon,
$$

which satisfies for all $n>N_{\varepsilon}$. Hence from the triangle inequality we obtain

$$
\sup _{z \in B_{r}} \frac{\left|z^{k} \psi(z)\right|}{h^{|k|} k^{k \beta}} e^{-H_{[\mu, v]}(\eta)} \leq \sup _{z \in B_{r}} \frac{\left|z^{k} \psi_{n_{0}}(z)\right|}{h^{|k|} k^{k \beta}} e^{-H_{[\mu, v]}(\eta)}+\varepsilon,
$$

where $n_{0}=N_{\varepsilon}+1$.
Taking a supremum over k and r in the above inequality, we obtain

$$
\|\psi\|_{E_{\beta}^{h}[\mu, \nu]} \leq\left\|\psi_{n_{0}}\right\|_{E_{\beta}^{h}[\mu, \nu]}+\varepsilon
$$

therefore $\psi \in E_{\beta}^{h}[\mu, v]$. Hence, the space $E_{\beta}^{h}[\mu, v]$ is complete.
The compactness of inclusions $E_{\beta}^{h}[\mu, v] \leftrightarrow E_{\beta}^{h^{\prime}}\left[\mu^{\prime}, v^{\prime}\right]$ with $[\mu, v] \subset\left[\mu^{\prime}, v^{\prime}\right], h<h^{\prime}$ follows from obvious inequality $e^{-H_{\left[\mu^{\prime}, v^{\prime}\right]}} \leq e^{-H_{[\mu, \nu]}}$ and from [10, pp. 38-40].

Define the space

$$
E_{\beta}\left(\mathbb{C}^{d}\right):=\bigcup_{\mu \prec v, h>0} E_{\beta}^{h}[\mu, v], \quad E_{\beta}\left(\mathbb{C}^{d}\right) \simeq \operatorname{limind}_{\mu \prec v, h>0} E_{\beta}^{h}[\mu, v],
$$

and endow it with the topology of inductive limit with respect to compact inclusions from the Proposition 4.

In what follows to simplify the notations we will write $\mathcal{G}_{\beta}:=\mathcal{G}_{\beta}\left(\mathbb{R}^{d}\right), \mathcal{G}_{\beta}^{\prime}:=\mathcal{G}_{\beta}^{\prime}\left(\mathbb{R}^{d}\right)$, $E_{\beta}:=E_{\beta}\left(\mathbb{C}^{d}\right), E_{\beta}^{\prime}:=E_{\beta}^{\prime}\left(\mathbb{C}^{d}\right)$.

3 Fourier-Laplace transform and Paley-Wiener-type theorem

Consider the inductive limits of Banach spaces

$$
E_{\beta}[\mu, v]:=\bigcup_{h>0} \mathcal{G}_{\beta}^{h}[\mu, v], \quad E_{\beta}[\mu, v] \simeq \operatorname{limind}_{h \rightarrow \infty} \mathcal{G}_{\beta}^{h}[\mu, v],
$$

and

$$
\mathcal{G}_{\beta}[\mu, v]:=\bigcup_{h>0} \mathcal{G}_{\beta}^{h}[\mu, v], \quad \mathcal{G}_{\beta}[\mu, v] \simeq \operatorname{limind}_{h \rightarrow \infty} \mathcal{G}_{\beta}^{h}[\mu, v] .
$$

On the space \mathcal{G}_{β} we define the Fourier-Laplace transform

$$
\begin{equation*}
\hat{\varphi}(z):=(F \varphi)(z)=\int_{\mathbb{R}^{d}} e^{-i(t, z)} \varphi(t) d t, \quad \varphi \in \mathcal{G}_{\beta}, \quad z \in \mathbb{C}^{d} \tag{4}
\end{equation*}
$$

Our main task is to show, that the function $\hat{\varphi}(z)$ belongs to the space E_{β}, moreover, we will prove that the mapping $F: \mathcal{G}_{\beta} \longrightarrow E_{\beta}$ is surjective. For this end we prove the following auxiliary statement, which can be found in [8, Lemma 1], but our proof is different.

Proposition 5. The image of the space $\mathcal{G}_{\beta}[\mu, v]$ with respect to mapping F is the space $E_{\beta}[\mu, v]$. Proof. Let $\varphi \in \mathcal{G}_{\beta}[\mu, v]$. Properties of the Fourier transform imply $\widehat{\partial^{k} \varphi}(z)=z^{k} \widehat{\varphi}(z)$ for all $k \in \mathbb{Z}_{+}^{d}$. Therefore for any z and k we have

$$
\left.\begin{aligned}
\left|z^{k} \hat{\varphi}(z)\right|=\left|\int_{\mathbb{R}^{d}} e^{-i(t, z)} \partial^{k} \varphi(t) d t\right| & \leq \int_{[\mu, v]}\left|e^{-i(t, \xi)} e^{(t, \eta)} \partial^{k} \varphi(t)\right| d t \\
& \leq h^{|k|} k^{k \beta} e^{H[\mu, v]}(\eta)
\end{aligned} \right\rvert\, \varphi \|_{\mathcal{G}_{\beta}^{h}[\mu, v]} \int_{[\mu, \nu]} d t . ~ \$
$$

It follows

$$
\begin{equation*}
\|\widehat{\varphi}\|_{E_{\beta}^{h}[\mu, v]} \leq C\|\varphi\|_{\mathcal{G}_{\beta}^{h}[\mu, v]}, \tag{5}
\end{equation*}
$$

where $C=\prod_{j=1}^{d}\left(v_{j}-\mu_{j}\right)$. Hence, $F\left(\mathcal{G}_{\beta}^{h}[\mu, \nu]\right) \subset E_{\beta}^{h}[\mu, v]$.
Vice versa. Let $\psi \in E_{\beta}^{h}[\mu, \nu]$. It is known, that the norm of the space $E_{\beta}^{h}[\mu, v]$ can be defined by the formula

$$
\|\psi\|_{E_{\beta}^{h}[\mu, v]}:=\sup _{k \in \mathbb{Z}_{+}^{d}} \sup _{z \in \mathbb{C}^{d}} \frac{\left|z^{k} \psi(z) e^{-H_{[\mu, v]}(\eta)}\right|}{h^{|k|}|k|!\beta},
$$

moreover, the topology, defined by this norm, is equivalent to earlier defined (see (2)). It follows that for each function $\psi \in E_{\beta}^{h}[\mu, v]$ there exists a constant C such that the inequality

$$
\begin{equation*}
\left|z^{k} \psi(z)\right| \leq C h^{|k|}|k|!^{\beta} e^{H_{[\mu, \nu]}(\eta)} \tag{6}
\end{equation*}
$$

holds for all $z \in \mathbb{C}^{d}$.
The following inequality

$$
e^{\beta t^{1 / \beta}}=\left(e^{t^{1 / \beta}}\right)^{\beta}=\left(\sum_{m=0}^{\infty} \frac{t^{m / \beta}}{m!}\right)^{\beta} \geq \frac{|t|^{m}}{m!\beta^{\prime}}
$$

holds for all $t \in \mathbb{R}$ and $m \in \mathbb{Z}_{+}$. In particular, for $t=|z| / h$ and $m=|k|$, we obtain

$$
e^{\beta\left(\frac{|z|}{h}\right)^{1 / \beta}} \geq \frac{|z|^{|k|}}{h^{|k|}|k|!^{\beta}} .
$$

Hence from the inequality $\left|z^{k}\right| \leq|z|^{|k|}$ it follows

$$
\frac{h^{|k|}|k|!^{\beta}}{\left|z^{k}\right|} e^{H_{[\mu, v]}(\eta)} \geq \frac{e^{H_{[\mu, v]}(\eta)}}{e^{(L|z|)^{1 / \beta}}},
$$

where $L=\frac{\beta^{\beta}}{h}$. So, if the function ψ satisfies the inequality (6), i.e. belongs to the space $E_{\beta}^{h}[\mu, v]$, then it satisfies the inequality

$$
|\psi(z)| \leq C e^{-(L|z|)^{1 / \beta}+H_{[\mu, v]}(\eta)} .
$$

From the theorem [10, theorem 2.22] it follows that there exists a function $\varphi \in \mathcal{G}_{\beta}[\mu, \nu]$ such that $\widehat{\varphi}=\psi$, i.e. $E_{\beta}^{h}[\mu, v] \subset F\left(\mathcal{G}_{\beta}^{h}[\mu, v]\right)$.

Hence, we have proved $F\left(\mathcal{G}_{\beta}^{h}[\mu, v]\right)=E_{\beta}^{h}[\mu, v]$. Since the constant $h>0$ is arbitrary, properties of inductive limit imply the desired equality

$$
F\left(\mathcal{G}_{\beta}[\mu, \nu]\right)=E_{\beta}[\mu, v] .
$$

The immediate consequence of the Proposition 5 and of the properties of inductive limit is the following assertion.

Corollary 1. The image of the space \mathcal{G}_{β} with respect to mapping F is the space E_{β}.
Therefore, we may consider the adjoint mapping $F^{\prime}: E_{\beta}^{\prime} \longrightarrow \mathcal{G}_{\beta}^{\prime}$.
Theorem 2. There exist the following topological isomorphisms

$$
F\left(\mathcal{G}_{\beta}\right) \simeq E_{\beta} \quad \text { and } \quad F^{\prime}\left(E_{\beta}^{\prime}\right) \simeq \mathcal{G}_{\beta}^{\prime} .
$$

Proof. The inequality (5) implies, that the mapping

$$
F: \mathcal{G}_{\beta}[\mu, v] \ni \varphi \longmapsto \widehat{\varphi} \in E_{\beta}[\mu, v]
$$

is continuous. From the Proposition 5 we obtain the surjectivity of the map. Therefore, the open map theorem [5, theorem 6.7.2] implies the topological isomorphism $F\left(\mathcal{G}_{\beta}[\mu, v]\right) \simeq$ $E_{\beta}[\mu, v]$. Since the segment $[\mu, v]$ is arbitrary, the properties of inductive limit imply the desired topological isomorphisms.

Using the Theorem 1 and a tensor structure of the space

$$
\Gamma\left(\mathcal{G}_{\beta}\right):=\bigoplus_{n \in \mathbb{Z}_{+}} \mathcal{G}_{\beta}^{\widehat{\otimes} n} \subset \bigoplus_{n \in \mathbb{Z}_{+}} \mathcal{G}_{\beta}^{\widehat{\otimes} n},
$$

we extend the mapping F to the mapping F^{\otimes}, that defined on $\Gamma\left(\mathcal{G}_{\beta}\right)$.
At first, take an element $\varphi^{\otimes n} \in \mathcal{G}_{\beta}^{\widehat{\otimes} n}$, with $\varphi \in \mathcal{G}_{\beta}$, from the total subset of $\mathcal{G}_{\beta}^{\widehat{\otimes} n}$. Define the operator $F^{\otimes n}$ as follows

$$
F^{\otimes n}: \varphi^{\otimes n} \longmapsto \hat{\varphi}^{\otimes n} \quad \text { and } \quad F^{\otimes 0}:=I_{\mathrm{C}},
$$

where $\hat{\varphi}^{\otimes n}:=(F \varphi)^{\otimes n}$. Next, we extend the map $F^{\otimes n}$ onto whole space $\mathcal{G}_{\beta}^{\widehat{\otimes} n}$ by linearity and continuity. So, we obtain $F^{\otimes n} \in \mathscr{L}\left(\mathcal{G}_{\beta}^{\widehat{\otimes} n}, E_{\beta}^{\widehat{\otimes} n}\right)$. Finally, we define F^{\otimes} as the mapping

$$
\begin{equation*}
F^{\otimes}:=\left(F^{\otimes n}\right): \Gamma\left(\mathcal{G}_{\beta}\right) \ni p:=\left(p_{n}\right) \quad \longmapsto \quad \hat{p}:=\left(\hat{p}_{n}\right) \in \Gamma\left(E_{\beta}\right), \tag{7}
\end{equation*}
$$

where $p_{n} \in \mathcal{G}_{\beta}^{\widehat{\otimes} n}, \hat{p}_{n}:=F^{\otimes n} p_{n} \in E_{\beta}^{\widehat{\otimes} n}$.
The following commutative diagram

uniquely defines the operator $F_{\mathcal{P}}^{\otimes}: \mathcal{P}\left(\mathcal{G}_{\beta}^{\prime}\right) \longrightarrow \mathcal{P}\left(E_{\beta}^{\prime}\right)$. The map $F_{\mathcal{P}}^{\otimes}$ we will call the polynomial Fourier-Laplace transformation.

We proved above that the mappings $F: \mathcal{G}_{\beta} \longrightarrow E_{\beta}$ and $F^{\prime}: E_{\beta}^{\prime} \longrightarrow \mathcal{G}_{\beta}^{\prime}$ are topological isomorphisms. Let us prove the analogue of this result. The next theorem may be considered as Paley-Wiener-type theorem.

Theorem 3. Polynomial Fourier-Laplace transformation is topological isomorphism from the algebra $\mathcal{P}\left(\mathcal{G}_{\beta}^{\prime}\right)$ into the algebra $\mathcal{P}\left(E_{\beta}^{\prime}\right)$.

Proof. From the Theorem 1 and commutativity of the diagram (8) it follows that it is enough to show that the mapping $F^{\otimes}: \Gamma\left(\mathcal{G}_{\beta}\right) \longrightarrow \Gamma\left(E_{\beta}\right)$ is topological isomorphism.

Theorem 2 and Corollary 1 imply the following equalities

$$
\operatorname{ker} F=\{0\}, \quad \operatorname{ker} F^{-1}=\{0\} .
$$

Let us consider the operators

$$
\begin{aligned}
I_{\mathcal{G}_{\beta}} \otimes F: \mathcal{G}_{\beta} \otimes \mathcal{G}_{\beta} \longrightarrow \mathcal{G}_{\beta} \otimes E_{\beta}, & F \otimes I_{E_{\beta}}: \mathcal{G}_{\beta} \otimes E_{\beta} \longrightarrow E_{\beta} \otimes E_{\beta}, \\
I_{E_{\beta}} \otimes F^{-1}: E_{\beta} \otimes E_{\beta} \longrightarrow E_{\beta} \otimes \mathcal{G}_{\beta}, & F^{-1} \otimes I_{\mathcal{G}_{\beta}}: E_{\beta} \otimes \mathcal{G}_{\beta} \longrightarrow \mathcal{G}_{\beta} \otimes \mathcal{G}_{\beta} .
\end{aligned}
$$

Since spaces \mathcal{G}_{β} and E_{β} are nuclear (DF) spaces, Proposition 1 implies the equalities

$$
\begin{array}{rlrl}
\operatorname{ker}\left(I_{\mathcal{G}_{\beta}} \otimes F\right) & =\{0\}, & \operatorname{ker}\left(F \otimes I_{E_{\beta}}\right)=\{0\}, \\
\operatorname{ker}\left(I_{E_{\beta}} \otimes F^{-1}\right) & =\{0\}, & & \operatorname{ker}\left(F^{-1} \otimes I_{\mathcal{G}_{\beta}}\right)=\{0\} .
\end{array}
$$

Therefore, compositions of these operators have the trivial kernels, i.e.

$$
\begin{aligned}
\operatorname{ker}\left(\left(F \otimes I_{E_{\beta}}\right) \circ\left(I_{\mathcal{G}_{\beta}} \otimes F\right)\right) & =\operatorname{ker}(F \otimes F)=\{0\}, \\
\operatorname{ker}\left(\left(F^{-1} \otimes I_{\mathcal{G}_{\beta}}\right) \circ\left(I_{E_{\beta}} \otimes F^{-1}\right)\right) & =\operatorname{ker}\left(F^{-1} \otimes F^{-1}\right)=\{0\} .
\end{aligned}
$$

Proceeding inductively finite times, we obtain

$$
\begin{aligned}
\operatorname{ker} F^{\otimes n} & =\operatorname{ker}(\underbrace{F \otimes \cdots \otimes F}_{n})=\{0\} \\
\operatorname{ker}\left(F^{-1}\right)^{\otimes n} & =\operatorname{ker}(\underbrace{F^{-1} \otimes \cdots \otimes F^{-1}}_{n})=\{0\},
\end{aligned}
$$

for all natural n. Note, that the mappings $F^{\otimes n},\left(F^{-1}\right)^{\otimes n}$ are continuous as tensor products of continuous operators. Since $\left(F^{\otimes n}\right)^{-1}=\left(F^{-1}\right)^{\otimes n}$, the mapping $F^{\otimes n}: \mathcal{G}_{\beta}^{\otimes \otimes n} \longrightarrow E_{\beta}^{\otimes \otimes n}$ is topological isomorphism. Finally, the map $F^{\otimes}: \Gamma\left(\mathcal{G}_{\beta}\right) \longrightarrow \Gamma\left(E_{\beta}\right)$ is topological isomorphism via the properties of direct sum topology.

References

[1] Andersen N.B., de Jeu M. Real Paley-Wiener theorems and local spectral radius formulas. Trans. Amer. Math. Soc. 2010, 362 (7), 3613-3640. doi:10.1090/S0002-9947-10-05044-0
[2] Chen Q.H., Li L.Q., Ren G.B. Generalized Paley-Wiener theorems. Int. J. Wavelets Multiresolut Inf. Process 2012, 10 (2), 1250020. doi:10.1142/S0219691312500208
[3] Chettaoui C., Othmani Y., Trimèchi K. On the range of the Dunkl transform on \mathbb{R}. Math. Sci. Res. J. 2004, 8 (3), 85-103.
[4] Dineen S. Complex analysis on infinite-dimensional spaces. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1999.
[5] Edwards R.E. Functional Analysis: Theory and Applications. Dover Publ., New York, 2011.
[6] Fu Y.X., Li L.Q. Real Paley-Wiener theorems for the Clifford Fourier transform. Sci. China Math. 2014, 57 (11), 2381-2392. doi: 10.1007/s11425-014-4838-7
[7] Gardner R.J. Geometric Tomography. Cambridge University Press, New York, 1995.
[8] Grasela K. Ultraincreasing distributions of exponential type. Univ. Iagel. Acta Math. 2003, 41, 245-253.
[9] Khrennikov A.Yu., Petersson H. A Paley-Wiener theorem for generalized entire functions on infinite-dimensional spaces. Izv. Math. 2001, 65 (2), 403-424. doi:10.1070/im2001v065n02ABEH000332 (translation of Izv. Ross. Akad. Nauk Ser. Mat. 2001, 65 (2), 201-224. doi:10.4213/im332 (in Russian))
[10] Komatsu H. An Introduction to the Theory of Generalized Functions. University Publ., Tokyo, 2000.
[11] Komatsu H. Ultradistributions I. Structure theorems and a characterization. J. Fac. Sci. Tokyo, Sec. IA 1973, 20, 25-105.
[12] Lopushansky O.V., Sharyn S.V. Polynomial ultradistributions on cone \mathbb{R}_{+}^{d}. Topology 2009, 48 (2-4), 80-90. doi:10.1016/j.top.2009.11.005
[13] Mitjagin B.S. Nuclearity and other properties of spaces of type S. Trudy Moscow. Math. Sci. 1960, 9, 317-328. (in Russian)
[14] Nikol'skii S.M. Approximation of Functions of Several Variables and Imbedding Theorems. Springer-Verlag, Berlin, 1975. doi: 10.1007/978-3-642-65711-5
[15] Musin I.Kh. Paley-Wiener type theorems for functions analytic in tube domains. Math. Notes 1993, 53 (4), 418-423. doi:10.1007/BF01210225 (translation of Mat. Zametki 1993, 53 (4), 92-100. (in Russian))
[16] Paley R., Wiener N. Fourier Transform in the Complex Domain. Amer. Math. Soc., Providence RI, 1934.
[17] Proshkina A. Paley-Wiener's Type Theorems for Fourier Transforms of Rapidly Decreasing Functions. Integral Transforms Spec. Funct. 2002, 13 (1), 39-48. doi:10.1080/10652460212887
[18] Sharyn S.V. The Paley-Wiener theorem for Schwartz distributions with support on a half-line. J. Math. Sci. 1999, 96 (2), 2985-2987. doi: 10.1007/BF02169692 (translation of Mat. Metodi Fiz.-Mekh. Polya 1997, 40 (4), 54-57. (in Ukrainian))
[19] Smirnov A.G. On topological tensor products of functional Frechet and DF spaces. Integral Transforms Spec. Funct. 2009, 20 (3-4), 309-318. doi:10.1080/10652460802568150
[20] Tuan V.K., Zayed A.I. Paley-Wiener-Type Theorems for a Class of Integral Transforms. J. Math. Anal. Appl. 2002, 266 (1), 200-226. doi:10.1006/jmaa.2001.7740
[21] Vinnitskii B.V., Dilnyi V.N. On generalization of Paley-Wiener theorem for weighted Hardy spaces. Ufa Math. J. 2013, 5 (3), 30-36. doi:10.13108/2013-5-4-30 (translation of Ufa Math. Zh. 5 (4), 31-37. (in Russian))
[22] Waphare B.B. A Paley-Wiener type theorem for the Hankel type transform of Colombeau type generalized functions. Asian J. Current Engineering and Maths 2012, 1 (3), 166-172.
[23] Zharinov V.V. Compact families of locally convex topological vector spaces, Fréchet-Schwartz and dual FréchetSchwartz spaces. Russian Math. Surveys 1979, 34 (4), 105-143. doi:10.1070/RM1979v034n04ABEH002963 (translation of Uspekhi Mat. Nauk 1979, 34 (4), 97-131. (in Russian))

Received 25.08.2015

Шарин С.В. Теорема типу Пелі-Вінера для поліноміальних ультрадиферениійовних функйій //
Карпатські матем. публ. - 2015. - Т.7, №2. - С. 271-279.
У статті описано образ простору ультрадиференційовних функцій з компактними носіями відносно перетворення Фур'є-Лапласа. Доведено аналог теореми Пелі-Вінера для поліноміальних ультрадиференційовних функцій.

Ключові слова і фрази: ультрадиференційовна функція, ультрарозподіл, поліноміальна основна функція, теорема типу Пелі-Вінера.

[^0]: У $\Delta \mathrm{K} 517.98$
 2010 Mathematics Subject Classification: 46F05, 46F12.

