ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2020, **12** (2), 461–467 doi:10.15330/cmp.12.2.461-467

APPLICATIONS ON OPERATIONS ON WEAKLY COMPACT GENERALIZED TOPOLOGICAL SPACES

ROY B.¹, NOIRI T.²

In this paper, we have introduced the notion of operations on a generalized topological space (X, μ) to investigate the notion of γ_{μ} -compact subsets of a generalized topological space and to study some of its properties. It is also shown that, under some conditions, γ_{μ} -compactness of a space is equivalent to some other weak forms of compactness. Characterizations of such sets are given. We have then introduced the concept of γ_{μ} - T_2 spaces to study some properties of γ_{μ} -compact spaces. This operation enables us to unify different results due to S. Kasahara.

Key words and phrases: operation, γ_{μ} -open set, γ_{μ} -compact space.

E-mail: bishwambhar_roy@yahoo.co.in(Roy B.), t.noiri@nifty.com(NoiriT.)

INTRODUCTION

The notion of an operation on a topological space was introduced by S. Kasahara [6] in 1979. After then D.S. Janković [5] introduced the concept of α -closed sets and investigated some properties of functions with α -closed graphs. The notion of γ -open sets was studied by H. Ogata [8] to investigate some new separation axioms. Recently, the notion of operations on the family of all semi-open sets and pre-open sets is investigated in [7, 12].

In this paper, our aim is to study the concept of γ_{μ} -compact subsets that are defined via operations, where an operation is defined on a collection of generalized open sets instead of a topology. The notion of generalized open sets was introduced by \hat{A} . Császár. We recall some notions defined in [2]. Let X be a non-empty set and $\mathcal{P}(X)$ be the power set of X. We call a class $\mu \subseteq expX$ a generalized topology [2] (briefly, GT) if $\emptyset \in \mu$ and any union of elements of μ belongs to μ . A set X with a GT μ on it is said to be a generalized topological space (briefly, GTS) and is denoted by (X, μ) . A GT μ on X is said to be strong if $X \in \mu$. A GTS (X, μ) is said to be quasi topological space [4] if it is closed under finite intersection.

For a GTS (X, μ) , the elements of μ are called μ -open sets and the complement of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A, i.e. the smallest μ -closed set containing A; and by $i_{\mu}(A)$ the union of all μ -open sets contained in A, i.e., the largest μ -open set contained in A (see [1,2]).

It is easy to observe that i_{μ} and c_{μ} are idempotent and monotonic, where $\gamma: \mathcal{P}(X) \to \mathcal{P}(X)$ is said to be idempotent iff for each $A \subseteq X$, $\gamma(\gamma(A)) = \gamma(A)$, and monotonic iff $\gamma(A) \subseteq \gamma(B)$ whenever $A \subseteq B \subseteq X$. It is also well known [2, 3] that let μ be a GT on X and $A \subseteq X$,

¹ Department of Mathematics, Women's Christian College, 700026, Kolkata, India

² 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-Ken, 869-5142, Japan

УДК 515.122

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54D20.

The first author acknowledges the financial support from Department of Higher education, Science and technology and Biotechnology, Government of West Bengal, India.

 $x \in X$, then $x \in c_{\mu}(A)$ if and only if $M \cap A \neq \emptyset$ for every $M \in \mu$ containing x and that $c_{\mu}(X \setminus A) = X \setminus i_{\mu}(A)$. We note that $x \in i_{\mu}(A)$ if and only if there exists some μ -open set U containing x such that $U \subseteq A$. A subset A of X is μ -open (resp. μ -closed) if and only if $A = i_{\mu}(A)$ (resp. $A = c_{\mu}(A)$).

1 γ_{μ} -OPEN SETS

Definition 1 ([9]). Let (X, μ) be a GTS. Let $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be a function from μ to $\mathcal{P}(X)$ such that $U \subseteq \gamma_{\mu}(U)$ for each $U \in \mu$. The function γ_{μ} is called an operation on μ and the image $\gamma_{\mu}(U)$ will be denoted by $U^{\gamma_{\mu}}$.

Definition 2 ([9]). Let (X, μ) be a GTS and γ_{μ} be an operation on μ . A subset A of X is called γ_{μ} -open if for each $x \in A$ there exists $U \in \mu$ such that $x \in U \subseteq U^{\gamma_{\mu}} \subseteq A$. The family of all γ_{μ} -open sets of (X, μ) is denoted by γ_{μ} -O(X). We assume that \emptyset is a γ_{μ} -open set.

Theorem 1. Let (X, μ) be a strong GTS and γ_{μ} be an operation on μ . For γ_{μ} -O(X), the following properties hold:

- $(i) \varnothing, X \in \gamma_{\mu} \text{-} O(X);$
- (ii) γ_{μ} -O(X) is closed under arbitrary union and hence γ_{μ} -O(X) is a GT on X;

(111)
$$\gamma_{\mu}$$
- $O(X) \subseteq \mu$.

Proof. (i) We assumed that $\emptyset \in \gamma_{\mu}$ -O(X). For each $x \in X$, there exists $X \in \mu$ such that $x \in X \subseteq X^{\gamma_{\mu}} \subseteq X$. Thus $X \in \gamma_{\mu}$ -O(X).

(ii) Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a family of γ_{μ} -open sets in (X, μ) and $x \in \bigcup \{A_{\alpha} : \alpha \in \Lambda\}$. Then there exists an $\alpha_0 \in \Lambda$ such that $x \in A_{\alpha_0}$. Since A_{α_0} is a γ_{μ} -open set, there exists a μ -open set Usuch that $x \in U \subseteq U^{\gamma_{\mu}} \subseteq A_{\alpha_0} \subseteq \bigcup \{A_{\alpha} : \alpha \in \Lambda\}$. Thus $\bigcup \{A_{\alpha} : \alpha \in \Lambda\}$ is a γ_{μ} -open set.

(iii) Let $A \in \gamma_{\mu}$ -O(X). Then for each $x \in A$, there exists a μ -open set U such that $x \in U \subseteq U^{\gamma_{\mu}} \subseteq A$. Hence $A = \cup \{U : x \in A\}$. Hence A is μ -open. Thus γ_{μ} - $O(X) \subseteq \mu$.

Remark 1. It follows that γ_{μ} -O(X) is a GT on X. But it is not closed under finite intersection, *i.e.* the intersection of two γ_{μ} -open sets is not always γ_{μ} -open. It follows from the example below.

Example 1. Let $X = \{1, 2, 3\}$ and $\mu = \{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, X\}$. Then (X, μ) is a GTS. Now $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ defined by

$$\gamma_{\mu}(A) = \begin{cases} A, & \text{if } 1 \in A, \\ \{2,3\}, & \text{otherwise,} \end{cases}$$

is an operation. It can be easily checked that {1,2} and {2,3} are two γ_{μ} -open sets but their intersection {2} is not so.

Definition 3. A GTS (X, μ) is said to be γ_{μ} -regular if for each $x \in X$ and each $U \in \mu$ containing x, there exists $V \in \mu$ such that $x \in V \subseteq V^{\gamma_{\mu}} \subseteq U$.

Theorem 2. For a strong GTS (X, μ) , the following propreties are equivalent:

(i)
$$\mu = \gamma_{\mu} - O(X);$$

(ii) (X, μ) is γ_{μ} -regular;

(iii) for each $x \in X$ and each $U \in \mu$ containing x, there exists $W \in \gamma_{\mu}$ -O(X) such that $x \in W \subseteq W^{\gamma_{\mu}} \subseteq U$.

Proof. (i) \Leftrightarrow (ii) This follows immediately from Definitions 2 and 3.

(ii) \Rightarrow (iii) For each $x \in X$ and $U \in \mu$ containing x, by (ii) there exists $W \in \mu$ such that $x \in W \subseteq W^{\gamma_{\mu}} \subseteq U$. Now by (i), $\mu = \gamma_{\mu} O(X)$ and hence W is a γ_{μ} -open set such that $x \in W \subseteq W^{\gamma_{\mu}} \subseteq U$.

(iii) \Rightarrow (i) By Theorem 1, γ_{μ} - $O(X) \subseteq \mu$. Let $U \in \mu$. Then for any $x \in U$, by (iii) there exists $W_x \in \gamma_{\mu}$ -O(X) such that $x \in W_x \subseteq U$. Thus by Theorem 1, we have $U = \bigcup \{W_x : x \in U\} \in \gamma_{\mu}$ -O(X).

Definition 4. An operation γ_{μ} on a GTS (X, μ) is said to be regular if for each $x \in X$ and each $U, V \in \mu$ containing x, there exists $W \in \mu$, such that $x \in W \subseteq W^{\gamma_{\mu}} \subseteq U^{\gamma_{\mu}} \cap V^{\gamma_{\mu}}$.

Theorem 3. Let $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be a regular operation on μ . Then $A \cap B$ is a γ_{μ} -open set for any γ_{μ} -open sets A and B. If μ is in addition strong, then γ_{μ} is a topology on X.

Proof. Let *A* and *B* be two γ_{μ} -open sets in a GTS (X, μ) . We shall show that $A \cap B$ is also a γ_{μ} -open set. Let $x \in A \cap B$. Then there exist two μ -open sets *U* and *V* containing *x* such that $U^{\gamma_{\mu}} \subseteq A$ and $V^{\gamma_{\mu}} \subseteq B$. Since $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ is a regular operation, there exists a μ -open set *W* containing *x* such that $W^{\gamma_{\mu}} \subseteq U^{\gamma_{\mu}} \cap V^{\gamma_{\mu}} \subseteq A \cap B$. Thus $A \cap B$ is γ_{μ} -open. The rest follows from Theorem 1.

Definition 5. Let (X, μ) be a GTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be an operation.

(a) It follows from Theorem 1 (ii) that γ_{μ} is a GT on X. The γ_{μ} -closure [9] of a set A in X is denoted by $c_{\gamma_{\mu}}(A)$ and is defined as $c_{\gamma_{\mu}}(A) = \bigcap \{F : F \text{ is a } \gamma_{\mu}\text{-closed set and } A \subseteq F\}$. It is easy to check that for each $x \in X$, $x \in c_{\gamma_{\mu}}(A)$ if and only if $V \cap A \neq \emptyset$ for any $V \in \gamma_{\mu}$ with $x \in V$. Also it is to be observed that $c_{\gamma_{\mu}}(A)$ is a γ_{μ} -closed set.

(b) The γ_{μ}^* -closure of A is denoted by γ_{μ} -c(A) and defined by γ_{μ} - $c(A) = \{x : A \cap U^{\gamma_{\mu}} \neq \emptyset$ for every μ -open set U containing $x\}$. A subset $A (\subseteq X)$ is called γ_{μ}^* -closed if γ_{μ} -c(A) = A.

Remark 2. Let $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be an operation on a GTS (X, μ) . It then follows that for any subset *A* of *X*, $A \subseteq c_{\mu}(A) \subseteq \gamma_{\mu}$ - $c(A) \subseteq c_{\gamma_{\mu}}(A)$.

2 γ_{μ} -compact spaces and related properties

Definition 6. A subset *A* of a strong GTS (X, μ) is said to be μ -compact [11] (weakly μ -compact [10]) if every cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of *A* by μ -open subsets of *X* has a finite subset Λ_0 of Λ such that $A \subseteq \bigcup \{U_{\alpha} : \alpha \in \Lambda_0\}$ (resp. $A \subseteq \bigcup \{c_{\mu}(U_{\alpha}) : \alpha \in \Lambda_0\}$).

If A = X, then the μ -compact (resp. μ -closed) subset A is known as a μ -compact space (resp. μ -closed) space.

Definition 7. Let (X, μ) be a strong GTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be an operation on μ . A subset A of (X, μ) is said be γ_{μ} -compact if every cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of A by μ -open subsets of X, there exists a finite subset Λ_0 of Λ such that $A \subseteq \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\}$. If A = X, then the γ_{μ} -compact subset A is called a γ_{μ} -compact space.

Remark 3. If (X, μ) be a strong GTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be an operation on μ . If γ_{μ} is an identity (resp. μ -closure) operation, then the notion of a γ_{μ} -compact space coincides with that of a μ -compact (weakly μ -compact) space.

Theorem 4. Let (X, μ) be a strong GTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be a regular operation on μ . Then the following are equivalent:

(i) (X, μ) is μ -compact;

(ii) (X, μ) is γ_{μ} -compact;

(iii) $(X, \gamma_{\mu} - O(X))$ is μ -compact;

(iv) $(X, \gamma_{\mu}$ -O(X)) is γ_{μ} -compact.

The implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) hold without the assumption of γ_{μ} -regularity on (*X*, μ).

Proof. (i) \Rightarrow (ii) Let (X, μ) be a μ -compact space. For any cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of μ -open subsets of X, there exists a finite subset Λ_0 of Λ such that $X = \bigcup \{U_{\alpha} : \alpha \in \Lambda_0\} \subseteq \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\}$. Therefore (X, μ) is γ_{μ} -compact.

(ii) \Rightarrow (iii) Let (X, μ) be a γ_{μ} -compact space and $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of X by γ_{μ} -open subsets of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in U_{\alpha(x)}$. Since $U_{\alpha(x)}$ is γ_{μ} -open, there exists $V_{\alpha(x)} \in \mu$ such that $x \in V_{\alpha(x)} \subseteq V_{\alpha(x)}^{\gamma_{\mu}} \subseteq U_{\alpha(x)}$. Then $\{V_{\alpha(x)} : x \in X\}$ is a cover of X by μ -open subsets of X. Since (X, μ) is γ_{μ} -compact, there exists a finite subset $\{x_1, x_2, \ldots, x_n\}$ of X such that $\cup \{V_{\alpha(x_i)}^{\gamma_{\mu}} : i = 1, 2, \ldots, n\} = X$ and hence $X = \cup \{U_{\alpha(x_i)} : i = 1, 2, \ldots, n\}$. Thus, $(X, \gamma_{\mu}$ -O(X)) is μ -compact.

(iii) \Rightarrow (iv) This follows from the fact that γ_{μ} - $O(X) \subseteq \mu$.

(iv) \Rightarrow (i) Let (X, μ) be γ_{μ} -regular and $(X, \gamma_{\mu} - O(X))$ be γ_{μ} -compact. Then by Theorem 2, $\mu = \gamma_{\mu} - O(X)$ and (X, μ) is γ_{μ} -compact. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a μ -open cover of X. Then for each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in U_{\alpha(x)}$. Since (X, μ) is γ_{μ} -regular, there exists $V_{\alpha(x)} \in \mu$ such that $x \in V_{\alpha(x)} \subseteq V_{\alpha(x)}^{\gamma_{\mu}} \subseteq U_{\alpha(x)}$. Since $\{V_{\alpha(x)} : x \in X\}$ is a μ -open cover of X and (X, μ) is γ_{μ} -compact, there exists a finite subset $\{x_1, x_2, \dots, x_n\}$ of X such that $\cup \{V_{\alpha(x_i)}^{\gamma_{\mu}} : i = 1, 2, \dots, n\} = X$. Thus, $\cup \{U_{\alpha(x_i)} : i = 1, 2, \dots, n\} = X$. Hence, (X, μ) is μ -compact. \Box

Remark 4. Let (X, μ) be a μ -compact space. If $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ is an operation on μ then (X, μ) is γ_{μ} -compact.

Example 2. Let \mathbb{N} be the set of natural numbers. Let $\mu = \mathcal{P}(\mathbb{N})$ (= the power set of \mathbb{N}). Now $\gamma_{\mu} : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ defined by

$$\gamma_{\mu}(A) = \begin{cases} \mathbb{N}, & \text{if } A \neq \{\emptyset\}, \\ \{\emptyset\}, & \text{otherwise.} \end{cases}$$

Then (\mathbb{N}, μ) is a γ_{μ} -compact space which is not μ -compact.

Definition 8. Let (X, μ) be a GTS and $\gamma_{\mu} : \mu \to (X)$ be an operation on μ . A filterbase \mathcal{F} on X is said to be

(a) γ_{μ} -converge to a point $x \in X$ if for each μ -open set U containing x, there exists $F \in \mathcal{F}$ such that $F \subseteq U^{\gamma_{\mu}}$;

(b) γ_{μ} -accumulate at $x \in X$ if for each $F \in \mathcal{F}$ and each μ -open set U containing x, $F \cap U^{\gamma_{\mu}} \neq \emptyset$.

Theorem 5. Let (X, μ) be a strong GTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be a μ -regular operation on μ . If a filterbase \mathcal{F} on $X \gamma_{\mu}$ -accumulates at $x \in X$, then there exists a filterbase \mathcal{G} on X such that $\mathcal{F} \subseteq \mathcal{G}$ and $\mathcal{G} \gamma_{\mu}$ -converges to x.

Proof. Let \mathcal{F} be the filterbase which γ_{μ} -accumulates at x. Hence for each μ -open set U containing x and each $A \in \mathcal{F}$, $A \cap U^{\gamma_{\mu}} \neq \emptyset$. Hence $x \in \gamma_{\mu}$ -c(A) for each $A \in \mathcal{F}$. Let $\mathcal{H} = \{A \cap U^{\gamma_{\mu}} : U \text{ is a } \mu$ -open set containing x and $A \in \mathcal{F}\}$. Suppose that $H_1, H_2 \in \mathcal{H}$. Then $H_1 \cap H_2 = (A_1 \cap U_1^{\gamma_{\mu}}) \cap (A_2 \cap U_2^{\gamma_{\mu}}) = (A_1 \cap A_2) \cap (U_1^{\gamma_{\mu}} \cap U_2^{\gamma_{\mu}})$ for every $A_1, A_2 \in \mathcal{F}$ and every μ -open set U_1, U_2 in X. Since γ_{μ} is μ -regular, there exists a μ -open set U_3 of X containing x such that $U_3^{\gamma_{\mu}} \subseteq U_1^{\gamma_{\mu}} \cap U_2^{\gamma_{\mu}}$. Since \mathcal{F} is a filterbase, there exists $A_3 \in \mathcal{F}$ such that $A_3 \subseteq A_1 \cap A_2$. Hence $A_3 \cap U_3^{\gamma_{\mu}} \subseteq H_1 \cap H_2$. Thus \mathcal{H} is a filterbase. Now set $\mathcal{G} = \{B : \exists C \in \mathcal{H} \text{ with } C \subseteq B\}$. Then \mathcal{G} is a filter generated by \mathcal{H} . Now for each μ -open set U containing x and each $A \in \mathcal{F}, U^{\gamma_{\mu}} \supseteq A \cap U^{\gamma_{\mu}} \in \mathcal{G}$, where $A \cap U^{\gamma_{\mu}} \in \mathcal{H}$. So $\mathcal{G} \gamma_{\mu}$ -converges to x. Also for each $A \in \mathcal{F}, A = X^{\gamma_{\mu}} \cap A \in \mathcal{H}$. So $A \in \mathcal{G}$.

Corollary 1. Let (X, μ) be a strong GTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be a μ -monotonic operation on μ . If a maximal filter in X that γ_{μ} -accumulates at a point $x \in X$, then it also γ_{μ} -converges to x.

Proof. Let \mathcal{F} be a maximal filterbase which γ_{μ} -accumulates at some point x_0 of X. If \mathcal{F} does not γ_{μ} -converge to x_0 , then there exists $U_0 \in \mu$ containing x_0 such that $F \cap U_{x_0}^{\gamma_{\mu}} \neq \emptyset$ and $F \cap (X \setminus U_{x_0}^{\gamma_{\mu}}) \neq \emptyset$ for every $F \in \mathcal{F}$. Then $\mathcal{F} \cup \{F \cap \mathcal{U}^{\gamma_{\mu}} : F \in \mathcal{F}\}$ is a filterbase on X which strictly contains \mathcal{F} . This is a contradiction to the maximality of \mathcal{F} .

Theorem 6. If a GTS (X, μ) is γ_{μ} -compact, for some operation μ such that (X, μ) is γ_{μ} -regular, then (X, μ) is μ -compact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a μ -open cover of X. For any $x \in X$, there exists $\alpha \in \Lambda$ such that $x \in U_{\alpha}$. Since X is γ_{μ} -regular, there exists $V_{\alpha} \in \mu$ such that $x \in V_{\alpha} \subseteq V_{\alpha}^{\gamma_{\mu}} \subseteq U_{\alpha}$. Since (X, μ) is γ_{μ} -compact and $\{V_{\alpha} : \alpha \in \Lambda\}$ is a μ -open cover of X, there is a finite subset Λ_0 of Λ such that $X = \cup \{V_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\} \subseteq \cup \{U_{\alpha} : \alpha \in \Lambda_0\}$.

Theorem 7. Let (X, μ) be a strong GTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be an operation on μ . Then the following are equivalent:

- (i) (X, μ) is γ_{μ} -compact;
- (ii) each maximal filter \mathcal{F} on X γ_{u} -converges to some point of X;
- (iii) each filterbase in X γ_{μ} -accumulates at some point of X.

Proof. (i) \Rightarrow (ii) Let (X, μ) be γ_{μ} -compact and \mathcal{F}_0 be a maximal filter on X. Suppose that \mathcal{F}_0 does not γ_{μ} -converge to any point of X. Then by Corollary 1, \mathcal{F}_0 does not γ_{μ} -accumulate at any point of X. Then for each $x \in X$, there exist $F_x \in \mathcal{F}_0$ and $U_x \in \mu$ containing x such that $F_x \cap U_x^{\gamma\mu} = \emptyset$. Then the family $\{U_x : x \in X\}$ is a cover of X by μ -open subsets of X. Thus by (i), there exists a finite subset $\{x_1, x_2, \ldots, x_n\}$ of X such that $X = \bigcup \{U_{x_i}^{\gamma\mu} : i = 1, 2, \ldots, n\}$. Since \mathcal{F}_0 is a filterbase on X, there exists $F_0 \in \mathcal{F}_0$, such that $F_0 \subseteq \bigcap \{F_{x_i} : i = 1, 2, \ldots, n\}$. Then $F_0 = F_0 \cap \bigcup \{U_{x_i}^{\gamma\mu} : i = 1, 2, \ldots, n\} = \bigcup \{F_0 \cap U_{x_i}^{\gamma\mu} : i = 1, 2, \ldots, n\} \subseteq \bigcup \{F_{x_i} \cap U_{x_i}^{\gamma\mu} : i = 1, 2, \ldots, n\} = 1, 2, \ldots, n\} = \emptyset$. This is a contradiction to the fact that $F_0 \in \mathcal{F}_0$. Thus $\mathcal{F}_0 \gamma_{\mu}$ -converges to some point of X.

(ii) \Rightarrow (iii) Let \mathcal{F} be a filterbase on X. Then there exists a maximal filterbase \mathcal{F}_0 such that $\mathcal{F} \subseteq \mathcal{F}_0$. By (ii), $\mathcal{F}_0 \gamma_{\mu}$ -converges to some point $x_0 \in X$. For any μ -open set U containing x_0 , there exists $F_0 \in \mathcal{F}_0$ such that $F_0 \subseteq U^{\gamma_{\mu}}$. For any $F \in \mathcal{F}$, $F \in \mathcal{F}_0$ and $\emptyset \neq F \cap F_0 \subseteq F \cap U^{\gamma_{\mu}}$. Thus each filterbase γ_{μ} -accumulates at some point of X.

(iii) \Rightarrow (i) Suppose that (X, μ) is not γ_{μ} -compact and (iii) holds. Then there exists a cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of X by μ -open sets of X such that $X \neq \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\}$ for every finite subset Λ_0 of Λ . Let $\Gamma(\Lambda)$ denotes the family of all finite subsets of Λ and $\mathcal{F} = \{X \setminus \bigcup_{\alpha \in \Lambda_{\lambda}} U_{\alpha}^{\gamma_{\mu}} : \Lambda_{\lambda} \in \Gamma(\Lambda)\}$. Then \mathcal{F} is a filterbase on X and by (iii) $\mathcal{F} \gamma_{\mu}$ -accumulates at some point x_0 of X. Since $\{U_{\alpha} : \alpha \in \Lambda\}$ is a cover of X by μ -open subsets of X, there exists $\alpha(x_0) \in \Lambda$ such that $x_0 \in U_{\alpha(x_0)}$. Then we have $(X \setminus U_{\alpha(x_0)}^{\gamma_{\mu}}) \cap U_{\alpha(x_0)}^{\gamma_{\mu}} = \emptyset$. This contradicts that $\mathcal{F} \gamma_{\mu}$ -accumulates at x_0 .

Theorem 8. Let *A* be any subset of a strong *GTS* (X, μ) such that *A* and $X \setminus A$ are both γ_{μ} -compact subsets of *X*, then (X, μ) is γ_{μ} -compact.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be a μ -open cover of X. Then $\{V_{\alpha} : \alpha \in \Lambda\}$ is a μ -open cover of A and $X \setminus A$ also. Thus there exist finite subsets Λ_1 and Λ_2 of Λ such that $A \subseteq \{V_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_1\}$ and $X \setminus A \subseteq \{V_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_2\}$. Thus $X = A \cup (X \setminus A) \subseteq \{V_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_1 \cup \Lambda_2\}$. This completes the proof.

Remark 5. Finite union of γ_{μ} -compact subsets of X is also γ_{μ} -compact.

Definition 9. Let (X, μ) be a GTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be an operation. Then (X, μ) is said to be γ_{μ} - T_2 if for any two distinct points x and $y \in X$, there exist μ -open sets U and V such that $x \in U, y \in V$ and $U^{\gamma_{\mu}} \cap V^{\gamma_{\mu}} = \emptyset$.

We observe that every γ_{μ} - T_2 space is μ - T_2 space. But the coverse is false as shown by Example 2.

Theorem 9. Let (X, μ) be QTS γ_{μ} -regular and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be a μ -monotonic operation. If (X, μ) is γ_{μ} - T_2 and $K \subseteq X$ is γ_{μ} -compact, then K is a γ_{μ} -closed set.

Proof. It is sufficient to show that $X \setminus K$ is a γ_{μ} -open set. Let $x \in X \setminus K$. For each $y \in K$, there exist μ -open sets U_y and V_y such that $x \in U_y$, $y \in V_y$ and $U_y^{\gamma_{\mu}} \cap V_y^{\gamma_{\mu}} = \emptyset$. Thus we can construct a cover $\mathcal{U} = \{V_y : y \in K\}$ of K by μ -open sets of X. Since K is γ_{μ} -compact, there exists a finite collection $\{V_{y_1}, V_{y_2}, \ldots, V_{y_n}\}$ of \mathcal{U} such that $K \subseteq \bigcup_{i=1}^n V_{y_i}^{\gamma_{\mu}}$. Let $U = \bigcap_{i=1}^n U_{y_i}$. Then U is a μ -open set containing x such that $U^{\gamma_{\mu}} \subseteq X \setminus K$. Then by γ_{μ} -regularity of X, there exists a μ -open set W containing x such that $x \in W \subseteq W^{\gamma_{\mu}} \subseteq U \subseteq U^{\gamma_{\mu}}$. Thus $W \subseteq W^{\gamma_{\mu}} \subseteq X \setminus K$. Hence, $X \setminus K$ is γ_{μ} -open.

We call an operation $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ on a GTS (X, μ) to be additive if for any $A, B \in \mu$, $(A \cup B)^{\gamma_{\mu}} = A^{\gamma_{\mu}} \cup B^{\gamma_{\mu}}$.

Theorem 10. Let (X, μ) be a QTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be an additive, μ -monotonic operation on μ . If $Y \subseteq X$ is γ_{μ} -compact, $x \in X \setminus Y$ and (X, μ) is γ_{μ} - T_2 , then there exist μ -open sets U and V with $x \in U, Y \subseteq V^{\gamma_{\mu}}$ and $U^{\gamma_{\mu}} \cap V^{\gamma_{\mu}} = \emptyset$. *Proof.* For each $y \in Y$, let V_y and U_y be μ -open sets such that $V_y^{\gamma\mu} \cap U_y^{\gamma\mu} = \emptyset$, with $y \in V_y$ and $x \in U_y$. The collection $\mathcal{V} = \{V_y : y \in Y\}$ is then a cover of Y by μ -open sets. Now since Y is γ_{μ} -compact, there exists a finite subcollection $\{V_{y_1}, V_{y_2}, \dots, V_{y_n}\}$ of \mathcal{V} such that $Y \subseteq \bigcup_{i=1}^n V_{y_i}^{\gamma\mu}$. Let $U = \bigcap_{i=1}^n U_{y_i}$ and $V = \bigcup_{i=1}^n V_{y_i}$. Since $U \subseteq U_{y_i}$ for every $i = 1, 2, \dots, n$ and γ_{μ} is monotonic, $U^{\gamma\mu} \cap V_{y_i}^{\gamma\mu} \subseteq U_{y_i}^{\gamma\mu} \cap V_{y_i}^{\gamma\mu} = \emptyset$ for $i = 1, 2, \dots, n$. Thus, $U^{\gamma\mu} \cap V^{\gamma\mu} = \emptyset$ (as γ_{μ} is an additive

operation on μ). Thus, $Y \subseteq V^{\gamma_{\mu}}$ and $x \in U$.

ACKNOWLEDGEMENT

The authors are thankful to the referee for some comments to improve the paper.

REFERENCES

- [1] Császár Á. γ-Compact Spaces. Acta Math. Hungar. 2000, 87 (1-2), 99–107. doi:10.1023/A:1006725101012
- [2] Császár Á. Generalized topology, generalized continuity. Acta Math. Hungar. 2002, 96 (4), 351–357. doi: 10.1023/A:1019713018007
- [3] Császár Á. Generalized open sets in generalized topologies. Acta Math. Hungar. 2005, 106 (1-2), 53–66. doi:10.1007/s10474-005-0005-5
- [4] Császár Á. Remarks on quasi topologies. Acta Math. Hungar. 2008, 119, 197–200. doi:10.1007/s10474-007-7023-4
- [5] Janković D.S. On functions with γ -closed graphs. Glas. Mat. Ser. III 1983, 18 (38), 141–148.
- [6] Kasahara S. Operation-compact spaces. Math. Japon. 1979, 24 (1) 97-105.
- [7] Krishnan G.S.S., Ganster M., Balachandran K. Operation approaches on semi open sets and its application. Kochi J. Math. 2007, 2, 21–33.
- [8] Ogata H. Operations on topological spaces and associated topology. Math. Japon. 1991, 36, 175–184.
- [9] Roy B. Applications of operation on minimal generalized open sets. Afr. Mat. 2018, 29 (7-8), 1097–1104. doi: 10.1007/s13370-018-0606-0
- [10] Sarsak M. S. Weakly μ-compact spaces. Demonstratio Math. 2012, 45 (4), 929–938. doi:10.1515/dema-2013-0411
- [11] Sarsak M. S. On µ-compact sets in µ-spaces. Quest. Ans. Gen. Topol 2013, 31, 49–57.
- [12] Van An T., Cuong. D. X., Maki H. On operation-preopen sets in topological space. Sci. Math. Japon., e-2008, 241–260.

Received 03.01.2019

Revised 24.09.2020

Рой Б., Ноірі Т. Застосуванная операцій на слабко компактних узагальнених топологічних простоpax // Карпатські матем. публ. — 2020. — Т.12, №2. — С. 461–467.

У цій статті введено означення операцій на узагальненому топологічному просторі (X, μ) для того, щоб дослідити поняття γ_{μ} -компактних підмножин узагальненого топологічного простору та вивчити деякі їх властивості. Також показано, що при деяких умовах γ_{μ} -компактність простору еквівалентна деяким іншим слабшим формам компактності. Дано характеризацію таких множин. Також введено поняття γ_{μ} - T_2 просторів для вивчення деяких властивостей γ_{μ} -компактних підножим різні результати С. Касахари.

Ключові слова і фрази: операція, γ_{μ} -відкрита множина, γ_{μ} -компактний простір.