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GABOR SYSTEMS ON POSITIVE HALF LINE VIA WALSH-FOURIER TRANSFORM
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Gabor systems play a vital role not only in modern harmonic analysis but also in several fields

of applied mathematics, for instances, detection of chirps, or image processing. In this paper, we

investigate Gabor systems on positive half line via Walsh-Fourier transform. We provide the com-

plete characterization of orthogonal Gabor systems on positive half line. Furthermore, we provide

the characterization of tight frames and orthonormal bases of Gabor systems on positive half line in

Fourier domain.
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INTRODUCTION

In the framework of mathematical analysis and linear algebra, redundant representations

are obtained by analysing vectors with respect to an overcomplete system. Then the obtained

vectors are interpreted using the frame theory as introduced by R.J. Duffin and A.C. Shaeffer

[4]. In signal processing, this concept has become very useful in analyzing the completeness

and stability of linear discrete signal representations. Frames did not seem to generate much

interest until the ground-breaking work of I. Daubechies et al. [3]. They combined the theory of

continuous wavelet transforms with the theory of frames to introduce wavelet (affine) frames

for L2(R). Since then the theory of frames began to be more widely investigated, and now

it is found to be useful in signal processing, image processing, harmonic analysis, sampling

theory, data transmission with erasures, quantum computing and medicine. Recently, more

applications of the theory of frames are found in diverse areas including optics, filter banks,

signal detection and in the study of Besov spaces and Banach spaces. We refer the reader

to [2, 10] for an introduction to frame theory and its applications.

One of the central tasks in signal processing and time-frequency analysis is to find conve-

nient series expansions of functions in L2(R). A popular choice of such series expansions is

by use of Gabor frames. Gabor systems are collections of functions

G(a, b, ψ) =
{

MmbTnaψ(x) =: e2πimbxψ(x − na) : m, n ∈ Z

}
, (1)

which are built by the combined action of modulations and translations of a single function,

and hence, can be viewed as the set of time-frequency shifts of ψ(x) ∈ L2(R) along the lattice

aZ × bZ in R
2. Such systems, also called Weyl-Heisenberg systems, were introduced by Gabor

[8] with the aim of constructing efficient, time-frequency localized expansions of signals as an
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infinite linear combinations of elements in (1). The system G(a, b, ψ) given by (1) is called a

Gabor frame if there exist constants A, B > 0 such that

A
∥∥ f
∥∥2

2
≤ ∑

m∈Z

∑
n∈Z

∣∣〈 f , MmbTnaψ
〉∣∣2 ≤ B

∥∥ f
∥∥2

2

holds for every f ∈ L2(R), and we call the optimal constants A and B the lower frame bound

and the upper frame bound, respectively. A tight Gabor frame refers to the case when A = B,

and a normalized tight frame refers to the case when A = B = 1. Gabor systems that form

frames for L2(R) have a wide variety of applications. One of the most important problem in

practice is therefore to determine conditions for Gabor systems to be frames. In practice, once

the window function has been chosen, the first question to investigate for Gabor analysis is to

find the values of the time-frequency parameters a, b such that G(a, b, ψ) is a frame. Therefore,

the product ab will decide whether the system G(a, b, ψ) constitutes a frame or even complete

for L2(R) or not. In this context, a useful tool is the Ron and Shen criterion (see [12]). By using

this criterion, K. Gröchenig et al. [9] have proved that the system G(a, b, ψ) cannot be a frame

for L2(R) if |ab| > 1 and have also shown that the system G(a, b, ψ) will form an orthonormal

basis for L2(R) if |ab| = 1.

Gabor analysis is a pervasive signal processing method for decomposing and reconstruct-

ing signals from their time frequency projections and also in the context of speech processing,

texture segmentation, pattern and object recognition. In order to analyze the dynamic time fre-

quency samples of the signals that contain a wide range of spatial and frequency components,

the resolution of which is normally very poor, the single windowed Gabor expansion is not

suitable. To address this issue, one of the best choices is multigenerator Gabor system which

a set of multiple windows of various time frequency localizations in frame system, the repre-

sentation of signals of multiple and time-varying frequencies would have their corresponding

windowing templates and resolutions to relate to. Ahmad O. and his collaborators in the series

of papers [1, 15–17] investigated Gabor frames on local fields and obtained various interesting

results.

There is a substantial body of work that has been concerned with the wavelet and

Gabor frames on positive half line. Shah F.A. [14] constructed Gabor frame on positive half

line and obtained necessary and sufficient conditions for Gabor frames in L2(R+). Recent re-

sults on wavelet frames in L2(R+) can be found in [5–7, 18] and the references therein. Mo-

tivated and inspired by the above works, we investigate Gabor systems on positive half line

via Walsh-Fourier transform. We provide the complete characterization of orthogonal Gabor

systems on positive half line. Furthermore, we provide the characterization of tight frames

and orthonormal bases of Gabor systems on positive half line in Fourier domain.

1 WALSH-FOURIER ANALYSIS

As usual, let R
+ = [0,+∞), Z

+ = {0, 1, 2, . . . } and N = Z
+ \ {0}. Denote by [x] the

integer part of x. Let p be a fixed natural number greater than 1. For x ∈ R
+ and any positive

integer j, we set

xj = [pjx] (mod p), x−j = [p1−jx] (mod p), (2)
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where xj, x−j ∈ {0, 1, . . . , p − 1}. Clearly, xj and x−j are the digits in the p-expansion of x:

x = ∑
j<0

x−j p
−j−1 + ∑

j>0

xj p
−j.

Moreover, the first sum on the right is always finite. Besides,

[x] = ∑
j<0

x−jp
−j−1, {x} = ∑

j>0

xj p
−j,

where [x] and {x} are, respectively, the integral and fractional parts of x.

Consider on R
+ the addition defined as follows:

x ⊕ y = ∑
j<0

ζ j p
−j−1 + ∑

j>0

ζ j p
−j,

with ζ j = xj + yj(mod p), j ∈ Z \ {0} , where ζ j ∈ {0, 1, . . . , p − 1} and xj, yj are calculated

by (2). Clearly, [x ⊕ y] = [x] ⊕ [y] and {x ⊕ y} = {x} ⊕ {y}. As usual, we write z = x ⊖ y if

z ⊕ y = x, where ⊖ denotes subtraction modulo p in R
+

.

Let ε p = exp(2πi/p), we define a function r0(x) on [0, 1) by

r0(x) =





1, if x ∈ [0, 1/p),

εℓp, if x ∈
[
ℓp−1, (ℓ+ 1)p−1

)
, ℓ = 1, 2, . . . , p − 1.

The extension of the function r0 to R
+ is given by the equality r0(x + 1) = r0(x), ∀ x ∈ R

+.

Then, the system of generalized Walsh functions {wm(x) : m ∈ Z
+} on [0, 1) is defined by

w0(x) ≡ 1 and wm(x) =
k

∏
j=0

(
r0(pjx)

)µj ,

where m = ∑
k
j=0 µj p

j, µj ∈ {0, 1, . . . , p − 1} , µk 6= 0. They have many properties similar to

those of the Haar functions and trigonometric series, and form a complete orthogonal system.

Further, by a Walsh polynomial we shall mean a finite linear combination of Walsh functions.

For x, y ∈ R
+

, let

χ(x, y) = exp

(
2πi

p

∞

∑
j=1

(xjy−j + x−jyj)

)
, (3)

where xj, yj are given by (2).

We observe that

χ

(
x,

m

pn

)
= χ

(
x

pn
, m

)
= wm

(
x

pn

)
, ∀ x ∈ [0, pn), m, n ∈ Z

+,

and

χ(x ⊕ y, z) = χ(x, z) χ(y, z), χ(x ⊖ y, z) = χ(x, z) χ(y, z),

where x, y, z ∈ R
+ and x ⊕ y is p-adic irrational. It is well known that systems {χ(α, .)}∞

α=0

and {χ(·, α)}∞
α=0 are orthonormal bases in L2[0,1] (see B.I. Golubov et al. [11]).
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The Walsh-Fourier transform of a function f ∈ L1(R+) ∩ L2(R+) is defined by

f̂ (ξ) =
∫

R+
f (x) χ(x, ξ) dx,

where χ(x, ξ) is given by (3). The Walsh-Fourier operator F : L1(R+) ∩ L2(R+) → L2(R+),

F f = f̂ , extends uniquely to the whole space L2(R+). The properties of the Walsh-Fourier

transform are quite similar to those of the classic Fourier transform (see [11, 13]). In particular,

if f ∈ L2(R+), then f̂ ∈ L2(R+) and
∥∥∥ f̂
∥∥∥

L2 (R+)
=
∥∥ f
∥∥

L2(R+)
.

Moreover, if f ∈ L2[0, 1], then we can define the Walsh-Fourier coefficients of f as

f̂ (n) =
∫ 1

0
f (x)wn(x) dx.

The series ∑n∈Z+ f̂ (n)wn(x) is called the Walsh-Fourier series of f . Therefore, from the stan-

dard L2-theory, we conclude that the Walsh-Fourier series of f converges to f in L2[0, 1] and

Parseval’s identity holds:

∥∥ f
∥∥2

2
=
∫ 1

0

∣∣ f (x)
∣∣2dx = ∑

n∈Z+

∣∣∣ f̂ (n)
∣∣∣
2

.

By p-adic interval I ⊂ R
+ of range n, we mean intervals of the form

I = Ik
n =

[
kp−n, (k + 1)p−n

)
, k ∈ Z

+.

The p-adic topology is generated by the collection of p-adic intervals and each p-adic interval

is both open and closed under the p-adic topology (see [11]). The family
{
[0, p−j) : j ∈ Z

}

forms a fundamental system of the p-adic topology on R
+. Therefore, the generalized Walsh

functions wj(x), 0 ≤ j ≤ pn − 1, assume constant values on each p-adic interval Ik
n and hence

continuous on these intervals. Thus, wj(x) = 1 for x ∈ I0
n.

Let En(R+) be the space of p-adic entire functions of order n, that is, the set of all functions,

which are constant on all p-adic intervals of range n. Thus, for every f ∈ En(R+), we have

f (x) = ∑
k∈Z+

f (p−nk)χIk
n
(x), x ∈ R

+.

Clearly each Walsh function of order up to pn−1 belongs to En(R+). The set E(R+) of p-adic

entire functions on R
+ is the union of all the spaces En(R+). It is clear that E(R+) is dense in

Lp(R+), 1 ≤ p < ∞, and each function in E(R+) is of compact support. Thus, we consider the

following set of functions

E0(R+) =
{

f ∈ E(R+) : supp f ⊂ R
+ \ {0}

}
.

Definition 1. Let H be a separable Hilbert space. A sequence { fk}
∞
k=1 in H is called a frame for

H if there exist constants A and B with 0 < A ≤ B < ∞ such that

A
∥∥ f
∥∥2

2
≤

∞

∑
k=1

∣∣〈 f , fk

〉∣∣2 ≤ B
∥∥ f
∥∥2

2
(4)

for all f ∈ H. The largest constant A and the smallest constant B satisfying (4) are called the

upper and the lower frame bound, respectively. The sequence { fk}
∞
k=1 is called a tight frame for

H if the upper frame bound A and the lower frame bound B coincide.
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In order to prove theorems to be presented in next section, we need the following results

whose proofs can be found in [2].

Lemma 1. Let H be a Hilbert space and { fk}
∞
k=1 be a family of elements of H. Then

∞

∑
k=1

∣∣〈 f , fk

〉∣∣2 =
∥∥ f
∥∥2

2
for all f ∈ H

if and only if

f =
∞

∑
k=1

〈 f , fk〉 fk for all f ∈ H.

Moreover, the system { fk}
∞
k=1 is a tight frame for H with constant 1 if either of the two above

conditions is satisfied.

Lemma 2. Let { fk}
∞
k=1 be a sequence in Hilbert space H such that the first equality of Lemma 1

holds for all f in a dense subset of H. Then, this equality is valid for all f in H.

Theorem 1. Suppose { fk}
∞
k=1 is a tight frame with constant 1 in Hilbert space H. If ‖ fk‖2 = 1

for all k = 1, 2, . . . , then { fk}
∞
k=1 is an orthonormal basis for H.

Definition 2. Let p and q be any two fixed positive real numbers. For any fixed positive integer

L, let Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(R+). A system of the form

G(Ψ, p, q) :=
{

MmqTnpψℓ =: wmq(x)ψℓ

(
x ⊖ np

)
: n, m ∈ Z

+, 1 ≤ ℓ ≤ L
}

(5)

is called the multi-generator Gabor system, where Mmq f (x) = wmq(x) f (x) and Tnp f (x) =

f
(

x ⊖ np
)

are the modulation and translation operators defined on L2(R+), respectively.

Definition 3. The Gabor system G(Ψ, p, q) defined by (5) is called a Gabor frame for L2(R+), if

there exist constants C and D, 0 < C ≤ D < ∞, such that

C
∥∥ f
∥∥2

2
≤

L

∑
ℓ=1

∑
m∈Z+

∑
n∈Z+

∣∣〈 f , MmqTnpψℓ

〉∣∣2 ≤ D
∥∥ f
∥∥2

2
.

We have also the following proposition (see [11]).

Proposition 1. The system
{

ψ
(

x ⊖ np
)

: n ∈ Z
+
}

of functions is an orthogonal system in

L2(R+) if and only if

∑
n∈Z+

∣∣∣ψ̂
(
ξ ⊖ q−1n

)∣∣∣
2
= |q|

∥∥ψ
∥∥2

2
a.e. ξ ∈ R

+.

Definition 4. A function f defined on R
+ is said to be periodic with period a if f (x ⊕ na) =

f (x) for all x ∈ R
+ and n ∈ Z

+.
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2 CHARACTERIZATION OF ORTHOGONAL GABOR SYSTEMS ON POSITIVE HALF LINE

We shall start this section by characterizing the orthogonality of Gabor systems G(Ψ, p, q)

given by (5) in terms of the Fourier transforms of the generators.

Theorem 2. The Gabor system G(Ψ, p, q) given by (5) is orthogonal if and only if

∑
n∈Z+

∣∣∣ψ̂ℓ

(
ξ ⊖ q−1n

)∣∣∣
2
= |q| ‖ψℓ‖

2
2 , a.e. ξ ∈ R

+, 1 ≤ ℓ ≤ L, (6)

∑
s∈N

ψ̂ℓ

(
ξ ⊕ q−1s ⊖ np

)
ψ̂ℓ

(
ξ ⊕ q−1s

)
= 0, a.e. ξ ∈ R

+,

for every n ∈ Z
+, 1 ≤ ℓ ≤ L, and

∑
s∈Z+

ψ̂ℓ

(
ξ ⊕ q−1s ⊖ np

)
ψ̂k

(
ξ ⊕ q−1s

)
= 0, a.e. ξ ∈ R

+,

for every n ∈ Z
+, 1 ≤ ℓ, k ≤ L, ℓ 6= k.

Proof. We first assume that the system G(Ψ, p, q) is orthogonal. Then, equation (6) is satisfied

for every ℓ, by virtue of the Proposition 1. Moreover, using the Plancherel theorem we obtain

0 = 〈ψℓ,m,n, ψk〉 =
〈
ψ̂ℓ,m,n, ψ̂k

〉
=
∫

R+
wmnpqwmq(ξ) ψ̂ℓ

(
ξ ⊖ np

)
ψ̂k(ξ) dξ

= ∑
s∈Z+

∫ q−1

0
wmnpqwmq(ξ) ψ̂ℓ

(
ξ ⊖ np

)
ψ̂k(ξ) dξ

= wmnpq ∑
s∈Z+

∫ q−1

0
wmq(ξ) ψ̂ℓ

(
ξ ⊕ q−1s ⊖ np

)
ψ̂k

(
ξ ⊕ q−1s

)
dξ.

Now, if the series

∑
s∈Z+

∫ q−1

0

∣∣∣wmq(ξ) ψ̂ℓ

(
ξ ⊕ q−1s ⊖ np

)
ψ̂k

(
ξ + q−1s

)
dξ
∣∣∣

converges, then by Beppo-Levi’s theorem, we can interchange the order of integration and

summation in the following integral

∫ q−1

0
∑

s∈Z+

wmq(ξ) ψ̂ℓ

(
ξ ⊕ q−1s ⊖ np

)
ψ̂k

(
ξ ⊕ q−1s

)
dξ.

However, we observe that

∑
s∈Z+

∫ q−1

0

∣∣∣wmq(ξ) ψ̂ℓ

(
ξ ⊕ q−1s ⊖ np

)
ψ̂k

(
ξ ⊕ q−1s

)
dξ
∣∣∣ =

∫

R+

∣∣∣ψ̂ℓ

(
ξ ⊖ np

)
ψ̂k(ξ)

∣∣∣ dξ

≤

{∫

R+

∣∣ψ̂ℓ

(
ξ ⊖ np

)∣∣2 dξ

}1/2 {∫

R+

∣∣∣ψ̂ℓ′(ξ)
∣∣∣
2

dξ

}1/2

< ∞.

Therefore, for ℓ 6= k and m, n ∈ Z
+, we have
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∫ q−1

0

{
∑

s∈Z+

ψ̂ℓ

(
ξ ⊕ q−1s ⊖ np

)
ψ̂k

(
ξ ⊕ q−1s

)
}

wmq(ξ) dξ = 0.

Since
{

wmq(ξ) : m ∈ Z
+
}

is a basis for L2[0, q−1) and

∑
s∈Z+

ψ̂ℓ

(
ξ ⊕ q−1s ⊖ np

)
ψ̂k

(
ξ ⊕ q−1s

)

is a periodic function, so we can conclude that for ℓ = k and n ∈ Z
+, we have

∑
s∈Z+

ψ̂ℓ

(
ξ ⊕ q−1s ⊖ np

)
ψ̂k

(
ξ ⊕ q−1s

)
= 0 for a.e. ξ ∈ R

+.

This completes the proof of the first implication.

Now let us assume that all the three conditions are satisfied. It is easy to verify that

〈ψℓ,m,n, ψk,m′,n′〉 = wpq (m−m′)(n′)

〈
ψℓ

m−m′,n+n′ψ
k
〉

.

Moreover, Proposition 1 implies that the systems {ψℓ,0,n : n ∈ Z
+} are orthogonal for each ℓ.

Therefore to finish the proof, we can invoke Beppo-Levi’s theorem, Plancherel formula and,

the second and the third conditions to prove, as above, that

〈
ψℓ,m,n, ψk

〉
= 0 for ℓ 6= k, m, n ∈ Z

+.

This completes the proof.

To prove the completeness of Gabor systems G(Ψ, p, q) in L2(R+) when |pq| = 1, we set

Wℓ
m = span

{
ψℓ,m,n : n ∈ Z

+
}

, 1 ≤ ℓ ≤ L, m ∈ Z
+.

Assume that the Gabor systems G(Ψ, p, q) given by (5) are orthogonal in L2(R+) and let Pℓ
m

denote the orthogonal projection onto the space Wℓ
m, that is

Pℓ
m f (x) = ∑

n∈Z+

〈
f , ψℓ,m,n

〉
ψℓ,m,n(x) for every f ∈ L2(R+).

Then, we have

〈
f̂ , ψ̂ℓ,m,n

〉
=

∫

R+
f̂ (ξ)wnq(ξ)wmnpq ψ̂ℓ

(
ξ ⊖ mp

)
dξ = ∑

s∈Z+

∫ q−1

0
wnq(ξ) f̂ (ξ) ψ̂ℓ

(
ξ ⊖ mp

)
dξ

= ∑
s∈Z+

∫ q−1

0
wn
(
ξ ⊕ q−1s

)
f̂
(
ξ ⊕ q−1s

)
ψ̂ℓ

(
ξ ⊕ q−1s ⊖ mp

)
dξ.

Note that

∑
s∈Z+

∫ q−1

0

∣∣∣wnq(ξ) f̂
(
ξ ⊕ q−1s

)
ψ̂ℓ

(
ξ ⊕ q−1s ⊖ mp

)∣∣∣dξ =
∫

R+

∣∣∣ f̂ (ξ)ψ̂ℓ

(
ξ ⊖ mp

)∣∣∣ dξ

≤

{∫

R+

∣∣∣ f̂ (ξ)
∣∣∣

2
dξ

}1/2{∫

R+

∣∣ψ̂ℓ

(
ξ ⊖ mp

)∣∣2 dξ

}1/2

=
∥∥∥ f̂
∥∥∥

2

∥∥ψ̂
∥∥

2
< ∞.
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Therefore, we can use the Beppo-Levi’s theorem to obtain

〈
f̂ , ψ̂ℓ,m,n

〉
=
∫ q−1

0

{
∑

s∈Z+

f̂
(
ξ ⊕ q−1s

)
ψ̂ℓ

(
ξ ⊕ q−1s ⊖ mp

)
}

wnq(ξ) dξ.

Clearly, these are the Fourier coefficients of the periodic function

∑
s∈Z+

f̂
(
ξ ⊕ q−1s

)
ψ̂ℓ

(
ξ ⊕ q−1s ⊖ mp

)
,

thus, we can write

∑
s∈Z+

f̂
(
ξ ⊕ q−1s

)
ψ̂ℓ

(
ξ ⊕ q−1s ⊖ mp

)
= |q| ∑

n∈Z+

〈
f̂ , ψ̂ℓ,m,n

〉
wnq(ξ).

Multiplying both sides of the above identity by ψ̂ℓ

(
ξ ⊖ mp

)
, we obtain the desired expression

for Pℓ
m as

P̂ℓ
m f (ξ) =

1

|p| ∑
s∈Z+

f̂
(
ξ ⊕ p−1s

)
ψ̂ℓ

(
ξ ⊕ p−1s ⊖ mq

)
ψ̂ℓ

(
ξ ⊖ mq

)
. (7)

Theorem 3. Let Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(K) and p, q ∈ R
+ \ {0} be given. If |pq| = 1 and

the functions ψ1, ψ2, . . . , ψL satisfy the following three conditions:

∑
m∈Z+

∣∣∣ψ̂ℓ

(
ξ ⊖ q−1m

)∣∣∣
2
= |q| ‖ψℓ‖

2
2 , a.e. ξ ∈ R

+, 1 ≤ ℓ ≤ L, (8)

∑
s∈Z+

ψ̂ℓ

(
ξ ⊕ q−1s ⊖ mp

)
ψ̂ℓ

(
ξ ⊕ q−1s

)
= 0, a.e. ξ ∈ R

+, (9)

for every m ∈ Z
+, 1 ≤ ℓ ≤ L, and

∑
s∈Z+

ψ̂ℓ

(
ξ ⊕ q−1s ⊖ mp

)
ψ̂k

(
ξ ⊕ q−1s

)
= 0, a.e. ξ ∈ R

+, (10)

for every m ∈ Z
+, 1 ≤ ℓ, k ≤ L, ℓ 6= k. Then, the Gabor system G(Ψ, p, q) as defined in (5) is

complete in L2(R+).

Proof. To prove the result, it is sufficient to prove that

L

∑
ℓ=1

∑
m∈Z+

P̂ℓ
m f (ξ) =

( L

∑
ℓ=1

‖ψℓ‖
2
2

)
f̂ (ξ) a.e. ξ ∈ R

+, (11)

and

lim
M→∞

∥∥∥∥∥
L

∑
ℓ=1

∑
|m|≤M

P̂ℓ
m f

∥∥∥∥∥
2

=

( L

∑
ℓ=1

‖ψℓ‖
2
2

) ∥∥∥ f̂
∥∥∥

2
(12)

hold for every f ∈ L2(R+). In view of Lemma 1 and Lemma 2, it is enough to verify that

the equalities (11) and (12) hold for all f ∈ E0. In Theorem 2, we have already shown that the

system G(Ψ, p, q) given by (5) is orthogonal in L2(R+); hence by applying (7) to the projections

Pℓ
m, we can write

L

∑
ℓ=1

∑
m∈Z+

P̂ℓ
m f (ξ) =

1

|q|

L

∑
ℓ=1

∑
m∈Z+

{
∑

s∈Z+

f̂
(
ξ ⊕ q−1s

)
ψℓ

(
ξ ⊕ q−1s ⊖ mp

)
ψ̂ℓ

(
ξ ⊖ mp

)
}
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=
1

|q|

L

∑
ℓ=1

∑
m∈Z+

f̂ (ξ)
∣∣ψ̂ℓ

(
ξ ⊖ mp

)∣∣2

+
1

|q|

L

∑
ℓ=1

∑
m∈Z+

∑
s∈Z+

f̂
(
ξ ⊕ q−1s

)
ψℓ

(
ξ ⊕ q−1s ⊖ mp

)
ψ̂ℓ

(
ξ ⊖ mp

)

=
1

|q|
f̂ (ξ)

L

∑
ℓ=1

∑
m∈Z+

∣∣ψ̂ℓ

(
ξ ⊖ mp

)∣∣2

+
1

|q|

L

∑
ℓ=1

∑
s∈Z+

f̂
(
ξ ⊕ q−1s

)
∑

m∈Z+

ψℓ

(
ξ ⊕ q−1s ⊖ mp

)
ψ̂ℓ

(
ξ ⊖ mp

)

= f̂ (ξ)

(
L

∑
ℓ=1

‖ψℓ‖
2
2

)
.

Here we have used our assumption on the functions ψℓ, i.e., equations (8)–(10) and the fact

|pq| = 1. The change in the order of summation is valid since f ∈ E0(R+), which implies that

the sum over s ∈ Z
+ is finite.

In order to prove the relation (12), we use the fact that Pℓ
m’s are mutually orthogonal, so

we have ∥∥∥∥∥
L

∑
ℓ=1

∑
|m|≤M

P̂ℓ
m f

∥∥∥∥∥
2

≤

(
L

∑
ℓ=1

‖ψℓ‖
2
2

)1/2 ∥∥∥ f̂
∥∥∥

2
for every M > 0.

Moreover, the orthogonality of Pℓ
m’s implies that

∥∥∥∥∥
L

∑
ℓ=1

∑
|m|≤M

P̂ℓ
m f

∥∥∥∥∥
2

=




L

∑
ℓ=1

∑
|m|≤M

∥∥∥P̂ℓ
m f
∥∥∥

2

2




1/2

is an increasing sequence bounded by

(
L

∑
ℓ=1

‖ψℓ‖
2
2

)1/2 ∥∥ f̂
∥∥

2
. Therefore, we have

lim
M→∞

∥∥∥∥∥
L

∑
ℓ=1

∑
|m|≤M

P̂ℓ
m f

∥∥∥∥∥
2

≤

(
L

∑
ℓ=1

‖ψℓ‖
2
2

)1/2 ∥∥∥ f̂
∥∥∥

2
.

On the other hand, by Fatou’s lemma we have

lim
M→∞

∥∥∥∥∥
L

∑
ℓ=1

∑
|m|≤M

P̂ℓ
m f

∥∥∥∥∥
2

≥

(
L

∑
ℓ=1

‖ψℓ‖
2
2

)1/2 ∥∥∥ f̂
∥∥∥

2
.

Combining the above inequalities, we get the desired result.

As a consequence of the above theorem, we get following characterization of tight Gabor

frames on positive half line.

Corollary 1. Let p, q ∈ R
+ \ {0} be given. Suppose Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(R+) be such

that
L

∑
ℓ=1

‖ψℓ‖
2
2 = 1. Then with the assumptions of Theorem 3, the system G(Ψ, p, q) given by

(5) constitutes a tight frame with constant 1 for L2(R+).
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By combining Corollary 1 with Theorem 1, we can obtain the following characterization

for Gabor systems generated by a single function.

Theorem 4. Let ψ ∈ L2(R+) and p, q ∈ R
+ \ {0} such that |pq| = 1. Then the system G(Ψ, p, q)

is a tight frame with constant 1 if and only if the following equations hold:

∑
m∈Z+

∣∣∣ψ̂
(
ξ ⊖ q−1m

)∣∣∣
2
= |q|, a.e. ξ ∈ R

+,

∑
s∈Z+

ψ̂
(
ξ ⊕ q−1s ⊖ mp

)
ψ̂
(
ξ ⊕ q−1s

)
= 0, a.e. ξ ∈ R

+, m ∈ Z
+.

3 CHARACTERIZATION OF TIGHT GABOR SYSTEMS ON POSITIVE HALF LINE

Theorem 5. The Gabor system G(Ψ, p, q) given by (5) is a tight frame for L2(R+) if and only if

it satisfies the two conditions:

L

∑
ℓ=1

∑
n∈Z+

∣∣ψ̂
(
ξ ⊖ np

)∣∣2 = |q|, a.e. ξ ∈ R
+ (13)

and
L

∑
ℓ=1

∑
n∈Z+

ψ̂
(
ξ ⊖ np

)
ψ̂
(
ξ ⊕ q−1m ⊖ np

)
= 0, a.e. ξ ∈ R

+, m 6= 0. (14)

Proof. Since the set E0(R+) =
{

f ∈ E(R+) : supp f̂ ⊂ R
+ \ {0}

}
is dense in L2(R+). There-

fore, by Lemma 2, it suffices to show that (13) and (14) imply that the Gabor system G(Ψ, p, q)

is a tight frame for L2(R+) for all f ∈ E0.

For every n ∈ Z
+, we define

F(ξ) = Fℓ
n(ξ) = f̂

(
ξ ⊖ np

)
ψ̂ℓ

(
ξ
)
.

Then,

F̂
(
mp
)
=
∫

R+
F(ξ)wmp(ξ) dξ = ∑

s∈Z+

∫ p−1

0
F(ξ)wmp(ξ) dξ

=
∫ p−1

0
wmp(ξ)

(
∑

s∈Z+

F
(
ξ ⊕ p−1s

)
)

dξ.

The interchange of the order of summation and integration is justified by the fact that

f ∈ E0(R+) is compactly supported and so is the function F and, consequently the sum over s

is finite. Therefore, we can write

|q| ∑
m∈Z+

∣∣F̂
(
qm
)∣∣2 =

∥∥∥ ∑
s∈Z+

F
(
ξ ⊕ q−1s

)∥∥∥
2

L2(D)

=
∫

D

(
∑

s∈Z+

F
(
ξ ⊕ q−1s

)
)(

∑
m∈Z+

F
(
ξ ⊕ q−1m

)
)

dξ

=
∫

R+

(
∑

s∈Z+

F
(
ξ ⊕ q−1s

)
)

F(ξ)dξ.
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Now from the definition of F, we obtain the following equality:

|q| ∑
m∈Z+

∣∣∣∣
∫

R+
f̂
(
ξ ⊕ np

)
ψ̂ℓ(ξ) wmq(ξ) dξ

∣∣∣∣
2

=
∫

R+
f̂
(
ξ ⊕ np

)
ψ̂ℓ(ξ)

(
∑

s∈Z+

f̂
(
ξ ⊕ q−1s ⊕ np

)
ψ̂ℓ

(
ξ ⊕ q−1s

)
)

dξ.

Further, by using Plancherel theorem and previous equality, we obtain

L

∑
ℓ=1

∑
m∈Z+

∑
n∈Z+

|〈 f , ψℓ,m,n〉|
2 =

L

∑
ℓ=1

∑
m∈Z+

∑
n∈Z+

∣∣∣〈 f̂ , ψ̂ℓ,m,n〉
∣∣∣
2

=
L

∑
ℓ=1

∑
m∈Z+

∑
n∈Z+

∫

R+

∣∣∣ f̂ (ξ)ψ̂ℓ

(
ξ ⊖ np

)
wmq(ξ) dξ

∣∣∣
2

=
L

∑
ℓ=1

∑
m∈Z+

∑
n∈Z+

∫

R+

∣∣∣ f̂ (ξ ⊕ np)ψ̂ℓ

(
ξ
)

wmq(ξ) dξ
∣∣∣
2

=
L

∑
ℓ=1

∑
n∈Z+

1

|q|

∫

R+
f̂
(
ξ ⊕ np) ψ̂ℓ(ξ)

(
∑

s∈Z+

f̂
(
ξ ⊕ q−1s ⊕ np

)
ψ̂ℓ

(
ξ ⊕ q−1s

)
)

dξ

=
L

∑
ℓ=1

∑
n∈Z+

1

|q|

∫

R+
| f̂
(
ξ ⊕ np)|2|ψ̂ℓ(ξ)|

2 dξ

+
L

∑
ℓ=1

∑
n∈Z+

1

|q|

∫

R+
f̂
(
ξ ⊕ np

)
ψ̂ℓ(ξ)

(
∑

m∈N

f̂
(
ξ ⊕ q−1m ⊕ np

)
ψ̂ℓ

(
ξ ⊕ q−1m

)
)

dξ

=
L

∑
ℓ=1

∑
n∈N0

1

|q|

∫

R+
| f̂ (ξ)|2 |ψ̂ℓ

(
ξ ⊖ np)

)
|2 dξ

+
L

∑
ℓ=1

∑
n∈Z+

1

|q|

∫

R+
f̂ (ξ) ψ̂ℓ

(
ξ ⊖ np

)
(

∑
m∈N

f̂
(
ξ ⊕ q−1m

)
ψ̂ℓ

(
ξ ⊕ q−1m ⊖ np

)
)

dξ

= I1 + I2,

(15)

where

I1 =
L

∑
ℓ=1

∑
n∈Z+

1

|q|

∫

R+
| f̂ (ξ)|2|ψ̂ℓ

(
ξ ⊖ np)

)
|2 dξ,

and

I2 =
L

∑
ℓ=1

∑
n∈Z+

1

|q|

∫

R+
f̂ (ξ) ψ̂ℓ

(
ξ ⊖ np

)
(

∑
m∈N

f̂
(
ξ ⊕ q−1m

)
ψ̂ℓ

(
ξ ⊕ q−1m ⊖ np

)
)

dξ.

Now, in order to justify the multiplication that show the second summand I2 to interchange

the summation and integration, we should prove the following fact.

Fact. For f ∈ E0(R+), 1 ≤ ℓ ≤ L and ψℓ ∈ L2(R+), we have

∑
n∈Z+

∫

R+
| f̂
(
ξ ⊕ np)

)
||ψ̂ℓ(ξ)|

(
∑

m∈N

∣∣∣ f̂
(
ξ ⊕ q−1m ⊕ np

)∣∣∣
∣∣∣ψ̂ℓ

(
ξ ⊕ q−1m

)∣∣∣
)

dξ < ∞.
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This is an easy consequence of the following inequality:

∣∣ψ̂ℓ(ξ)
∣∣
∣∣∣ψ̂ℓ

(
ξ ⊕ q−1m

)∣∣∣ ≤
∣∣ψ̂ℓ(ξ)

∣∣2 ⊕
∣∣∣ψ̂ℓ

(
ξ ⊕ q−1m

)∣∣∣
2

and the fact that f has compact support and is bounded.

By the above Fact, we can rewrite I2 as

I2 =
L

∑
ℓ=1

∑
n∈Z+

1

|q|

∫

R+
f̂ (ξ) ψ̂ℓ

(
ξ ⊖ np

)
(

∑
m∈N

f̂
(
ξ ⊕ q−1m

)
ψ̂ℓ

(
ξ ⊕ q−1m ⊖ np

)
)

dξ

=
∫

R+
f̂ (ξ) ∑

m∈N

f̂
(
ξ ⊕ q−1m

)
Gm(ξ) dξ,

where

Gm(ξ) =
1

|q|

L

∑
ℓ=1

∑
n∈Z+

ψ̂ℓ

(
ξ ⊖ np

)
ψ̂ℓ

(
ξ ⊕ q−1m ⊖ np

)
, for m ∈ Z

+.

Therefore, it is clear that if the system (5) satisfies equations (13) and (14), then

I1 = ∑
n∈Z+

1

|q|

∫

R+

∣∣∣ f̂ (ξ)
∣∣∣
2 ∣∣ψ̂ℓ

(
ξ ⊖ np)

)∣∣2 dξ =
∫

R+

∣∣∣ f̂ (ξ)
∣∣∣
2

dξ =
∥∥ f
∥∥2

2
,

and I2 = 0. Hence, equation (15) becomes

L

∑
ℓ=1

∑
m∈Z+

∑
n∈Z+

|〈 f , ψℓ,m,n〉|
2 = I1 + I2 = ‖ f‖2

2 ,

which completes the proof of the fact that any Gabor system (5) satisfies (13) and (14) is a tight

frame for L2(R+).

Conversely, suppose that the Gabor system defined by (5) is a tight frame for L2(R+), i.e.,

L

∑
ℓ=1

∑
m∈Z+

∑
n∈Z+

|〈 f , ψℓ,m,n〉|
2 = ‖ f‖2

2 , for all f ∈ L2(R+).

Clearly, our condition holds in particular for all functions f ∈ E0(R+). Therefore, by varying

f in E0(R+), we see from above that I1 < +∞ if and only if G0(ξ) =
1

|q|

L

∑
ℓ=1

∑
n∈Z+

|ψ̂ℓ

(
ξ ⊖ np

)
|2

is locally integrable in R
+. Thus, almost every point in R

+ is a regular point of the integral of

G0(ξ). This means that if ξ0 is such a point, then

lim
m→∞

∫

ξ−x∈Im(x)
G0(ξ)dξ = G0(ξ0).

Let us fix M > 0 and choose f ′ be a function such that

f̂ ′(ξ) = wm(ξ − ξ0), m ≥ M,

where wm(ξ − ξ0) are Walsh functions of ξ0 + Im(x). Recall the decomposition, we have used

in the proof of first implication, we have

I ′ = I ′1 + I ′2.
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Therefore, I ′ = ‖ f ′‖2 = ‖ f̂ ′‖2 = 1 and

1 =
∫

ξ0−x∈Im(x)
G0(ξ) dξ + Iδ

2

as M → ∞. Now, if we can show that I ′2 → 0 as m → ∞, then
(
since ξ0 is a regular point of the

integral of G0(ξ)
)
, we have

1 = lim
n→0

∫

ξ−x∈In(x)
G0(ξ) dξ + I ′2 = G0(ξ0) + lim

n→0
I ′2 = G0(ξ0)

and hence (13) is satisfied by the Gabor system (5). To do this, we argue as we do in the proof

of the Fact, we see that |I ′2| is dominated by the sum of two terms:

1

|q|

L

∑
ℓ=1

∑
n∈Z+

∫

R+
∑

m∈N

∣∣∣ f̂ ′(ξ)
∣∣∣
∣∣∣ f̂ ′
(
ξ ⊕ q−1m

)∣∣∣
∣∣ψ̂ℓ

(
ξ ⊖ np)

)∣∣2 dξ

and
1

|q|

L

∑
ℓ=1

∑
n∈Z+

∫

R+
∑

m∈N

∣∣∣ f̂ ′(ξ)
∣∣∣
∣∣∣ f̂ ′
(
ξ ⊕ q−1m

)∣∣∣
∣∣∣ψ̂ℓ

(
ξ ⊕ q−1m ⊖ np)

)∣∣∣
2

dξ.

Moreover, for every m 6= 0, we have
∣∣∣ f̂ ′(ξ)

∣∣∣
∣∣∣ f̂ ′
(
ξ ⊕ q−1m

)∣∣∣ = 0

as m → ∞. Thus, I ′2 = 0 as m → ∞ and therefore, we can conclude that G0(ξ) = 1, a.e. ξ ∈ R
+,

i.e., the equality in (13) is satisfied by the Gabor system (5)

L

∑
ℓ=1

∑
n∈Z+

∣∣ψ̂ℓ

(
ξ ⊖ np

)∣∣2 = |q|, a.e. ξ ∈ K.

This also shows that I2 = 0 for all f ∈ E0(R+), i.e.,

I2 =
∫

R+
f̂ (ξ) ∑

m∈N

f̂
(
ξ ⊕ q−1m

)
Gm(ξ) dξ = 0.

Further, by the application of the polarization identity, we get
∫

R+
f̂ (ξ) ∑

m∈N

ĥ
(
ξ ⊕ q−1m

)
Gm(ξ) dξ = 0 for all f , h ∈ E0(R+). (16)

Let us fix m0 6= 0 and choose a regular point ξ0 of the integral of Gm0 such that ξ0 6= 0. Since

G0 is locally integrable on R
+ and therefore, almost every point in R

+ is a regular point of its

integral. Let fm and hm in E0(R+) be functions such that

f̂m(ξ) = wm(ξ − ξ0), m ≥ M

and

ĥm(ξ) = wm(ξ − q−1ξ0).

Then, in particular, we have

f̂m(ξ)ĥm

(
ξ0 ⊕ q−1m0

)
= χξ−x∈In(x)(ξ).
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Let us now write (16) using the functions fm and hm:

0 =
∫

R+
f̂δ(ξ) ∑

m∈N

ĥm
(
ξ ⊕ q−1m

)
Gm(ξ) dξ

=
∫

R+
f̂δ(ξ)ĥδ

(
ξ ⊕ q−1m0

)
Gm0(ξ) dξ +

∫

R+
f̂δ(ξ) ∑

m0 6=m∈N

ĥδ

(
ξ ⊕ q−1m

)
Gm(ξ) dξ

=
∫

ξ−x∈Im(x)
Gm0(ξ)dξ + J ′.

By examining the term J ′ very closely, we see as before, that as m → ∞, it is equal to zero.

Therefore, by employing the fact that ξ0 was chosen to be a regular point of Gm0(ξ), we obtain

(14) as:

lim
m→∞

∫

ξ−x∈Im(x)
Gm0(ξ)dξ = 0,

which implies that

∑
n∈Z+

ψ̂ℓ

(
ξ ⊖ np

)
ψ̂ℓ

(
ξ ⊕ q−1m ⊖ np

)
= 0, a.e. ξ ∈ R

+, m 6= 0.

This completes the proof of the theorem.

Theorem 6. The Gabor system G(Ψ, p, q) given by (5) is an orthonormal basis for L2(R+) if

and only if it satisfies equations (13) and (14) together with ‖ψℓ‖2 = 1, 1 ≤ ℓ ≤ L.

Proof. Suppose that the Gabor system G(Ψ, p, q) given by (5) is an orthonormal basis for

L2(R+), then clearly it is a tight frame and hence by Theorem 5, it follows that equations

(13) and (14) are satisfied. Further, the orthonormality of the system implies that ‖ψℓ‖2 = 1.

Conversely, in view of Theorem 5, equations (13) and (14) imply that the Gabor system (5) is a

tight frame for L2(R+). Since ‖ψℓ,m,n‖2 = ‖g‖2, so by Theorem 1, we conclude that the Gabor

system given by (5) is an orthonormal basis for L2(R+).
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Системи Габора вiдiграють життєво важливу роль не тiльки в сучасному гармонiчному

аналiзi, але i в декiлькох областях прикладної математики, наприклад, виявлення сигналiв або

обробка зображень. У цiй роботi ми дослiджуємо системи Габора на додатнiй пiвосi за допо-

могою перетворення Уолша-Фур’є. Ми надаємо повну характеризацiю ортогональних систем

Габора на додатнiй пiвосi. Бiльш того, ми пропонуємо характеризацiю щiльних рамок та ор-

тонормованих базисiв систем Габора на додатнiй пiвосi в областi Фур’є.

Ключовi слова i фрази: рамка Габора, перетворення Уолша-Фур’є, ортогональнiсть.


