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For resonant tunneling structure with GaN – potential wells and AlN – potential barriers, calculation of 
internal fields caused by piezoelectric and spontaneous polarization was carried. 

In the model the effective mass of an electron and a dielectric continuum model using finite difference 
method self-consistent solutions of the Schrödinger and Poisson system of equations taking into account the 
contribution of piezoelectric and spontaneous polarizations was found.  

Based on the found solutions of the Schrödinger and Poisson system of equations for resonance tunneling 
structure, which functioned as a cascade experimentally realized a quantum cascade detector, calculation of the 
potential profile and the electron energy spectrum was carried. It was found, that calculated value of detected 
energy is different from the experimentally obtained not more than 3 %. 
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Introduction 

Significant scientific progress in the modern physics 
of semiconductors is the study of the work of quantum 
cascade detectors (QCD) [1-3], and the study of physical 
processes occurring in semiconductor resonance 
tunneling structures (RTS), which are their active 
elements. Currently, in relation to the physical nature of 
the processes occurring in the QCD can be distinguished 
two of their types.  

The first type QCD, the layers of which RTS are 
based on arsenide compounds: GaAs, InAs, AlAs, 
GaInAs etc., the crystalline lattices of which belong to 
the AIIIBV group of symmetry. QCD of this type works in 
the medium and far infrared spectral bands of 
electromagnetic waves. Thus their work is possible only 
at maintenance of low temperatures (cooling by liquid 
nitrogen). The work of the QCD of this type is well 
investigated experimentally [1-3] and theoretically [4-6].  

The second type includes the QCD, the layers of 
which RTS are based on anisotropic semiconductor 
media, formed by nitride compounds GaN, AlN [7-9], 
the crystalline lattices of which also belong to the AIIIBV 
symmetry group. An essential feature of the AIIIBV group 
of nitrides is that in the work of the QCD on their basis it 
is necessary to take into account their anisotropic 
properties. Since in elemental lattices of wurtzite type, 

which usually have nitrides of the AIIIBV group, the total 
dipole moment of each lattice is uncompensated, as well 
as on the heteroboundaries of multilayer RTS there is 
inconsistency of lattice constants, which leads to the 
emergence of spontaneous and piezoelectric 
polarizations. Thus, the total macroscopic polarization 
that occurs in the RTS layers creates an internal electric 
field that substantially deforms the potential profile of 
the nanostructure. Deep potential wells in the RTS layers 
that provide the work of nanoscale devices in the near 
infrared spectral bands of electromagnetic waves and 
their efficient functioning at significantly higher 
temperatures determine the considerable scientific and 
applied interest to the QCD based on the nitrides of the 
AIIIBV group. However, despite a number of papers [10-
15] on the investigation of mechanisms of internal fields 
occurrence in the RTS, at the moment there is no 
consistent theory, which would allow to perform 
calculations of potential profiles for multilayer RTS of 
cascades of QCD taking into account the contribution of 
piezoelectric and spontaneous polarizations. This is due 
to the fact that the approach to calculating the potential 
RTS profiles proposed in the above-mentioned works is 
rather rough, since it allows only the contribution of 
internal fields to the magnitude of an effective potential 
profile [10-13] or based on numerical modeling of 
solutions of a self-consistent system Schrödinger and 
Poisson equations [14, 15]. It can also be implemented
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Fig. 1. Geometric scheme of multilayer RTS. 

 
only on powerful computers. 

In the proposed paper, taking into account the 
contribution of piezoelectric and spontaneous 
polarizations, self-consistent solutions of the Schrödinger 
and Poisson equations are found. With their use, the 
quantum-mechanical theory of stationary electronic 
states in a flat RTS as an active band of QCD is 
developed. 

For the RTS of the experimentally investigated QCD 
with GaN-potential wells and AlN-potential barriers, 
functionalized in the near infrared range, the self-
consistent calculation of the electronic potential profile, 
the stationary energy spectrum and the value of the 
detected energy was performed. 

I. Self-consistent solutons of Shrodinger 
and Poisson’s equations 

A multilayer RTS, which is located so that in the 
Cartesian coordinate system, the OZ axis is 
perpendicular to the boundaries of the separation of 
nanostructure layers, is considered (Fig. 1). It is assumed 
that the medium (0), (1), (3), (5), (6) correspond to the 
semiconductor material AlN, medium (2) – GaN, 
medium (4) – Al0.58Ga0.42N. 

Using for an electron the model of effective masses 
we have: 
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- dielectric permeability of RTS layers material. 
Energy spectrum of an electron nE  and its wave 

functions ),( zEnnΨ  are determined by solving a self-
consistent system of Schrödinger and Poisson equations: 
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where )(zρ  - free charge density inside RTS, and the 
effective potential for an electron is found as: 
 )()()()()( zVzVzVzEzV EexHC +++∆= , (4) 

In the ratio (4): 
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- potential RTS profile for the electron, calculated 
without taking into account the electric field of 
piezoelectric and spontaneous polarizations, where the 
dependence of the band gap width on temperature T  for 
a NGaAl 1 xx −  semiconductor is given by the Varshni 
empirical relation [13-15]: 
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In the ratio (4): 
 )()( zezV HH ϕ=  (8) 

- the potential which is the solution of the Poisson 
equation in the system of equations (3). 

Further in the expression (4): 
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exchange-correlation potential, calculated in the Hedin 
and Lundqvist approximation, where -
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characterizes the electron gas in the nanostructure, In 

relation to the effective Bohr radius 
B
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Ba  - Bohr radius, )(zn  - is the concentration of carriers 
that create a static spatial charge. 

The potential energy )(zVE  of the interaction of an 
electron with fields of spontaneous and piezoelectric 
polarization inside the RTS is found as: 
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The values of internal fields 5..0, =pFp , are 

determined from the condition of continuity of the vector 
of electrical displacement pp

p
p PFD += )(ε  on all the 

RTS heteroboundaries, i.e. :  
 1+= pp DD , (11) 
without taking into account the availability of free 

charges within the RTS [12-14], which gives the 
condition: 
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Then, from the relations (10) and (11) we have: 
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kd  - the thickness of the corresponding layer of the RTS. 

The magnitude of the macroscopic polarization )( pP  
in expression (13), formed in random p-th RTS layer, is 
expressed as the sum of spontaneous )( p

SPP  and 

piezoelectric )( p
PZP  polarizations: 

 )()()( p
PZ

p
SP

p PPP += , (14) 
Spontaneous polarization in hexagonal wurtzite-type 

crystals is given as: 
 kPP p

SP
p

SP
)()( = , (15) 

where k  - unit vector along the Oz  axis, which 
determines the orientation of the crystallographic axis. 

Piezoelectric polarization for a three-component 
semiconductor layer of NBA xx −1  -type, depending on 

the concentration x  of the component A  is determined 
by linear approximation:  



Self-Consistent Calculation of Potential Profile of GaN/AlN Resonace Tunnelling Structures 

 291 

 
))()(()(

)()1(

))()(()(
)()()(

)(

xppBN
SPPZPx

xppAN
SPPZPxp

SPPZP

η

η

−+

+=
,  (16) 

where ))(( )()(
)( xP ppAN

SPPZ η  і ))(( )()(
)( xP ppBN

SPPZ η  - due to 
the inconsistency of the lattice constants of the RTS 
layers, depend on the magnitude of the basal deformation 

)(
)()( subs)()(

xa
xaaxpp −

==ηη , where )(xa  and subsa  - 

lattice constants of material of the nanostructure and 
substrate layers respectively, and: 

 

)(
33

2)(
13)(

12
)(

11
)(

5

1
2)(

5

1
)(

)(

buf

)(2

;

)(

,00891.031986.0)(

p

p
ppp

k
p
p

p
p
pp

C
CCCA

a
d

a
d

A
a

xxa

−+=

=

−=

∑

∑

=

= ,[13] (17) 

where )( pa  - lattice constant of material, pd  - thickness, 
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the p -th layer. 

The value of piezoelectric polarization within a 
separate RTS layer is defined as: 
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where )(
33

)(
31 , pp ee  - piezoelectric constants. 

On the heteroboundaries of the investigated system we obtain the conditions of the continuity for the wave function 
and the flows of its probabilities, which is the solution of the first equation of the self-consistent system (3): 
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and conditions for the continuity of the potential )(zHϕ  and the vector of electric displacement field:  
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where the second condition takes into account the 
presence of surface charges on the nanosystem 
heteroboundaries.  

It is believed that for the potential outside of the 
RTS, the conditions for its disappearance are fulfilled: 
 0)(;0)(

50
→→

→→ zzHzH zz ϕϕ . (21) 

Solutions of the self-consistent system (3) are 
searched on a uniform grid [16]: 
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where 554321 zdddddl =++++=  - total RTS 
thickness. 

According to the finite difference method, the first 
and second derivatives are approximated as [16] (for 
convenience, the index “n” is omitted):  
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In addition, for wave functions, conditions of 
periodicity similar to those of Born–von Karman 
boundary condition must be fulfilled. This gives the 
condition: 
 1̀10 ; +Ψ=ΨΨ=Ψ NN , (24) 

Then the wave functions of the electron are 
determined by solutions of the matrix equation: 
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where srA  )...1,...1(
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NrNs == - matrix, for which 
elements we have: 
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The stationary energy spectrum )(s
nE  of electron is 

determined from the dispersion equation: 
 0det =− IANN λ , (26) 

i.e., for each eigenvalue nλ  of a matrix NNA , the energy 
value of the discrete spectrum is defined as: 
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...,2,1=n  - number of the energy level of the stationary 
electronic spectrum. 

Similarly, we find that solutions of the Poisson 
equation, taking into account the boundary conditions for 
it (20), and with the approximation of derivatives in 
accordance with (23), are determined by solutions of the 
matrix equation: 
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where srB  )...1,...1(
______________

NrNs == - matrix, for which elements we have: 
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In the ratio (28): 
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FE  - Fermi level of the RTS material layers, DN , +
DN  

- concentration of donor and ionized donor impurities, 
respectively, 0n  - free carriers concentration in the RTS. 

Now the self-consistent solution of the system of 
Schrödinger and Poisson equations (3) is based on the 
method of successive iterations l  according to the 
scheme: 
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where the effective potential in the first order of 
iterations is calculated as: 
 )()()()1( zVzEzV EC +∆= . (31) 

The accuracy of calculations by the scheme (29) 
given the obvious conditions: 
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In direct calculations the accuracy of the calculations 
according to conditions (32) was considered equal to  
10-6, which was provided by 7-10 iterations according to 
the scheme (30). 

II. Discussion of results 

On the basis of the developed theory, the calculation 

of the stationary energy spectrum of the electron nE  and 
its wave functions ),( zEnnΨ  in RTS, and effective 
potential )(zV  and its components 

)(),(),(),( zVzVzVzE EexHC∆  was performed. 
Direct calculations were performed for the 

experimentally implemented RTS, which functioned as a 
cascade of QCD. [8]. The geometric parameters of the 
RTS are as follows: the thickness of potential barriers: 

nm1;nm1;nm2 321 =∆=∆=∆ , the width of the 

potential wells: nm15;nm08.2 21 == dd . Physical 
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On Fig. 2 shows the energetic scheme of one cascade 

of QCD, the calculation of which was performed without 
taking into account the electric field of spontaneous and 
piezoelectric polarization according to the relations (5) - 
(7). From figure (2) it is seen that in comparison with 
cascades of QCD, operating in the middle and far 
infrared ranges of electromagnetic waves [1, 2], depths 
of the potential wells and height of the potential barriers 
are much larger, which represents significant prospects 
for the variation of the working characteristics of the 
QCD by varying of the parameters of the geometric 
design of the RTS [4, 5]. 

Calculations of the effective potential component 
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Fig. 2. Energetic scheme of one cascade of QCD without taking into account the electric field of spontaneous and 

piezoelectric polarization. 
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Fig. 3. Dependence on the value of z  component of the effective potential determined by piezoelectric and 

spontaneous polarizations. 
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determined by piezoelectric and spontaneous 
polarizations were performed according to the relations 
(4), (8)-(10). The results of calculations, depending on 
the value of z , are given in Fig. 3. It is seen from Fig. 3 
that the internal electric fields determined by 
piezoelectric and spontaneous polarizations are 
commensurable with the values of the heights and depths 
of the potential wells on the RTS barriers, respectively, 
which, as will be seen below, is the reason for their 
significant contribution in the total effective potential. 

The results of calculation of the total effective 
potential on the value of z  for the investigated RTS are 
presented on Fig. 4. It is seen from the figure, that taking 
into account the effects in the components of the 
effective potential according to the relation (4), leads to a 
significant deformation of the output potential. It should 
be noted, that this effect is a consequence of the physical 
properties of the investigated RTS potential wells and 

barriers layers material  and is of decisive importance for 
the electromagnetic waves detection process the by the 
QCL. 

In addition, in Fig. 4 showed the calculated values of 
the resonant electron energies in the investigated RTS 
(left on the picture) and the corresponding distributions 
of the probability of finding electron within the 
nanosystem 2),( zEnΨ  (reduced to scale of energy 
scale). The direct values of the resonant energies and 
information on the localization of the electron within the 
RTS for the corresponding energy state are given in 
Table. 1. It is seen from Fig. 4 that the calculated value 
of the detected energy corresponding to the energy 
transition between the electron states localized in the 
active band of QCD is as follows: 

( theor)
8 1E E 670.7 meVΩ = Ω = − = . The 

calculated value of the value of the detected energy is 
well correlated with the experiment, since it differs from 
the experimentally obtained value (exp) 650.0 meVΩ =  
by no more than 3.1 %. 

Conclusions 

On the basis of the self-consistent solutions of the 
Schrödinger-Poisson equations, taking into account the 
contribution of piezoelectric and spontaneous 
polarizations, a quantum-mechanical theory of stationary 
electronic states in a flat RTS as an active band of QCD 
was developed. For experimentally studied RTS on the 
basis of the developed theory, a self-consistent 
calculation of the electronic potential profile, the 
stationary energy spectrum and the value of the detected 
energy is performed. It is shown that the results of 
calculations are in good agreement with the experiment. 
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Fig. 4. The energy structure of the QCD cascade with the indicated energy levels of the electron stationary states 

and the corresponding distributions 
2

),( znEΨ  of the probability of its location within the RTS. 

Table 1 
The values of the energies of the electron discrete 

spectrum in the closed RTS of QCD and their 
localization 

Energy values 
(meV) Localization 

E1= 496.2 active band 
E2= 717.4 extractor 
E3= 824.7 extractor 
E4= 912.5 extractor 
E5= 990.1 extractor 
E6= 1061.1 extractor 
E7= 1128.4 extractor 
E8= 1166.9 active band 
E9= 1197.6 extractor 
E10= 1276.1 extractor 
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Самоузгоджений розрахунок потенціального профілю GaN/AlN 
резонансно-тунельних структур 

1Тернопільський національний технічний університет імені Івана Пулюя, вул. Руська 56,  
м. Тернопіль, e-mail: boyko.i.v.theory@gmail.com 

2Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського, 2,  
м. Чернівці, e-mail: ktf@chnu.edu.ua 

Для резонансно-тунельної структури з GaN – потенціальними ямами та AlN – потенціальними 
бар’єрами виконано розрахунок внутрішніх полів, спричинених виникаючими у наноструктурі 
п’єзоелектричною та спонтанною поляризаціями. 

У моделі ефективних мас для електрона та моделі діелектричного континууму з використанням 
методу скінченних різниць знайдено самоузгоджені розв’язки системи рівнянь Шредінгера та Пуассона з 
урахуванням внеску п’єзоелектричної та спонтанної поляризацій.  

На основі знайдених розв’язків системи рівнянь Шредінгера та Пуассона для резонансно-тунельної 
структури, що слугувала каскадом експериментально реалізованого квантового каскадного детектора, 
виконано розрахунок її потенціального профілю та електронного енергетичного спектру. Встановлено, 
що розрахована величина детектованої енергії відрізняється від експериментально отриманої не більше 
ніж на 3 %. 

Ключові слова: квантовий каскадний детектор, резонансно-тунельна структура, п’єзоелектрична 
поляризація, спонтанна поляризація, потенціальний профіль. 
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