Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/10398
Title: | General infinite series evaluations involving Fibonacci numbers and the Riemann zeta function |
Authors: | Frontczak, Robert Гой, Тарас Петрович |
Keywords: | Fibonacci number Lucas number Riemann zeta function digamma function generating function |
Issue Date: | 2021 |
Citation: | Frontczak R. General infinite series evaluations involving Fibonacci numbers and the Riemann zeta functions / R. Frontczak, T. Goy // Matematychni Studii. – 2021. – 55 (2). – P. 115–123. |
Abstract: | The purpose of this paper is to present closed forms for various types of infinite series involving Fibonacci (Lucas) numbers and the Riemann zeta function at integer arguments. To prove our results, we will apply some conventional arguments and combine the Binet formulas for these sequences with generating functions involving the Riemann zeta function and some known series evaluations. |
URI: | http://hdl.handle.net/123456789/10398 |
Appears in Collections: | Статті та тези (ФМІ) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
128-Article Text (pdf)-840-1-10-20210623.pdf | 111.3 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.