Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/14589
Title: Machine learning based animal emotion classification using audio signals
Authors: Slobodian, Mariia
Kozlenko, Mykola
Козленко, Микола Іванович
Слободян, Марія
Keywords: acoustic features
audio signals
dog vocalization analysis
machine learning
deep learning
artificial neural network
mobile application
cepstral coefficients
sound segmentation
Issue Date: 29-Nov-2022
Publisher: Vasyl Stefanyk Precarpathian National University
Citation: M. Slobodian and M. Kozlenko, "Machine learning based animal emotion classification using audio signals," 2022 International Conference on Innovative Solutions in Software Engineering (ICISSE), Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine, Nov. 29-30, 2022, pp. 277-281, doi: 10.5281/zenodo.7514137
Abstract: This paper presents the machine learning approach to the automated classification of a dog's emotional state based on the processing and recognition of audio signals. It offers helpful information for improving human-machine interfaces and developing more precise tools for classifying emotions from acoustic data. The presented model demonstrates an overall accuracy value above 70% for audio signals recorded for one dog.
URI: https://zenodo.org/record/7514137
http://hdl.handle.net/123456789/14589
ISBN: 978-966-640-534-3
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
2022_ICISSE_77.pdf419.61 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.