Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/14589
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSlobodian, Mariia-
dc.contributor.authorKozlenko, Mykola-
dc.contributor.authorКозленко, Микола Іванович-
dc.contributor.authorСлободян, Марія-
dc.date.accessioned2023-01-09T07:37:14Z-
dc.date.available2023-01-09T07:37:14Z-
dc.date.issued2022-11-29-
dc.identifier.citationM. Slobodian and M. Kozlenko, "Machine learning based animal emotion classification using audio signals," 2022 International Conference on Innovative Solutions in Software Engineering (ICISSE), Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine, Nov. 29-30, 2022, pp. 277-281, doi: 10.5281/zenodo.7514137uk_UA
dc.identifier.isbn978-966-640-534-3-
dc.identifier.other10.5281/zenodo.7514137-
dc.identifier.urihttps://zenodo.org/record/7514137-
dc.identifier.urihttp://hdl.handle.net/123456789/14589-
dc.description.abstractThis paper presents the machine learning approach to the automated classification of a dog's emotional state based on the processing and recognition of audio signals. It offers helpful information for improving human-machine interfaces and developing more precise tools for classifying emotions from acoustic data. The presented model demonstrates an overall accuracy value above 70% for audio signals recorded for one dog.uk_UA
dc.language.isoen_USuk_UA
dc.publisherVasyl Stefanyk Precarpathian National Universityuk_UA
dc.subjectacoustic featuresuk_UA
dc.subjectaudio signalsuk_UA
dc.subjectdog vocalization analysisuk_UA
dc.subjectmachine learninguk_UA
dc.subjectdeep learninguk_UA
dc.subjectartificial neural networkuk_UA
dc.subjectmobile applicationuk_UA
dc.subjectcepstral coefficientsuk_UA
dc.subjectsound segmentationuk_UA
dc.titleMachine learning based animal emotion classification using audio signalsuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
2022_ICISSE_77.pdf419.61 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.