Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://hdl.handle.net/123456789/1521
Назва: On some of convergence domains of multidimensional S-fractions with independent variables
Автори: Dmytryshyn, Roman
Дмитришин, Роман Іванович
Ключові слова: multidimensional S-fraction with independent variables
convergence
Дата публікації: 2019
Бібліографічний опис: Dmytryshyn R.I. On some of convergence domains of multidimensional S-fractions with independent variables // Carpathian Math. Publ. ‒ 2019. ‒ Vol. 11, № 1. ‒ P. 54–58.
Короткий огляд (реферат): The convergence of multidimensional S-fractions with independent variables is investigated using the multidimensional generalization of the classical Worpitzky's criterion of convergence, the criterions of convergence of the branched continued fractions with independent variables, whose partial quotients are of the form $\frac{q_{i(k)}^{i_k}q_{i(k-1)}^{i_k-1}(1-q_{i(k-1)})z_{i(k)}}{1},$ and the convergence continuation theorem to extend the convergence, already known for a small domain (open connected set), to a larger domain. It is shown that the union of the intersections of the parabolic and circular domains is the domain of convergence of the multidimensional S-fraction with independent variables, and that the union of parabolic domains is the domain of convergence of the branched continued fraction with independent variables, reciprocal to it.
URI (Уніфікований ідентифікатор ресурсу): http://hdl.handle.net/123456789/1521
Розташовується у зібраннях:Статті та тези (ФМІ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
DR_2019.pdf100.63 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.