Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://hdl.handle.net/123456789/5207
Назва: On the convergence of multidimensional S-fractions with independent variables
Автори: Dmytryshyn, Roman
Bodnar, Oksana
Дмитришин, Роман Іванович
Ключові слова: convergence
uniform convergence
S-fraction
multidimensional S-fraction with independent variables
Дата публікації: 2018
Короткий огляд (реферат): In this paper, we investigate the convergence of multidimensional S-fractions with independent variables, which are a multidimensional generalization of S-fractions. These branched continued fractions are an efficient tool for the approximation of multivariable functions, which are represented by formal multiple power series. For establishing the convergence criteria, we use the convergence continuation theorem to extend the convergence, already known for a small region, to a larger region. As a result, we have shown that the intersection of the interior of the parabola and the open disk is the domain of convergence of a multidimensional S-fraction with independent variables. Also we have shown that the interior of the parabola is the domain of convergence of a branched continued fraction, which is reciprocal to the multidimensional S-fraction with independent variables. In addition, we have obtained two new convergence criteria for S-fractions as consequences from the above mentioned results.
URI (Уніфікований ідентифікатор ресурсу): http://hdl.handle.net/123456789/5207
Розташовується у зібраннях:Статті та тези (ФМІ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
BO_DR_2018.pdf115.53 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.